前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >NLP界“威震天”袭来!英伟达1小时成功训练BERT,83亿参数打造史上最大语言模型

NLP界“威震天”袭来!英伟达1小时成功训练BERT,83亿参数打造史上最大语言模型

作者头像
新智元
发布2019-08-15 18:22:50
9890
发布2019-08-15 18:22:50
举报
文章被收录于专栏:新智元新智元


新智元报道

来源:VB、TechCrunch、GitHub

编辑:金磊、小芹

【新智元导读】英伟达一举创造了2个壮举!训练出了世界上最大的语言模型——MegatronLM,包含83亿参数,比BERT大24倍,比GPT-2大5.6倍;还打破了实时对话AI的记录,仅耗时53分钟即可训练出行业标准BERT模型、2毫秒就能对答案做出推断!

世界上最大的语言模型来了,顺便还破了个记录!

英伟达宣布,目前已经训练出了世界上最大的语言模型——MegatronLM

这个模型有多大?83亿个参数!比谷歌的 BERT 大24倍,比 OpenAI 的 GPT-2 大5.6倍

不仅如此,英伟达还宣布打破了实时对话 AI 的记录——耗时53分钟就可以训练出行业标准的BERT模型、2毫秒左右就能对答案做出推断。

为了实现这一壮举,英伟达利用模型的并行性,将一个神经网络分割成多个部分,创建了因数据太大无法容纳在单个GPU的训练模型。

最重要的是,代码已开源!

GitHub项目地址: https://github.com/NVIDIA/Megatron-LM

MegatronLM,堪称 NLP 界的“威震天”

有钱任性:训练史上最大语言模型需要多少GPU?

更大的语言模型对于诸如文章完成、问题回答和对话系统等NLP任务非常有用。最近,训练最大的神经语言模型已经成为提高NLP应用水平的最佳方法。

最近的两篇论文,BERTGPT-2,展示了大规模语言建模的好处。这两篇论文都利用了计算机和可用文本语料库的进步,在自然语言理解、建模和生成方面显著超越了当前的最优水平。

训练这些模型需要数以百计exaflops级的计算力和巧妙的内存管理,以换取减少内存占用的重新计算。然而,对于超过10亿参数的超大型的模型,单个GPU上的内存不足以匹配模型以及训练所需的参数,需要利用模型并行性来将参数分割到多个GPU上。有几种建模并行性的方法,但是它们很难使用,因为它们依赖于自定义编译器,或者扩展性很差,或者需要对优化器进行更改。

在这项工作中,我们通过对现有PyTorch transformer实现进行少量有针对性的修改,实现了一种简单而有效的模型并行方法。我们的代码是用原生Python编写的,利用混合精度训练,并利用NCCL库在GPU之间进行通信。

我们通过在512个GPU上训练一个transformer语言模型证明了这种方法的有效性,该模型具有8路模型并行性和64路数据并行性,83亿参数,使其成为有史以来规模最大的基于transformer的语言模型,其大小为BERT的24倍,GPT-2的5.6倍。我们已经在GitHub存储库中发布了实现此方法的代码。

我们的实验是在英伟达的DGX SuperPOD上进行的。在没有模型并行性的情况下,我们可以在单个V100 32GB GPU上训练一个12亿参数的基线模型,并在整个训练过程中保持39 TeraFLOPS,这是DGX2-H服务器上单个GPU理论峰值的30%。

我们将模型参数扩展到83亿,使用512个GPU,通过8路模型并行化,在整个应用程序中我们实现了高达15.1 PetaFLOPS的持续性能,与单GPU相比,扩展效率达到76%。图1显示了扩展的结果。

图1:模型并行(蓝色):多达8路模型并行弱扩展,每个GPU大约有10亿个参数(例如2个GPU有20亿参数,4个GPU有40亿参数)。模型+数据并行(绿色):类似于模型并行的64路数据并行的配置。

多GPU并行性

训练模型的典型范例是利用 weak scaling 方法和分布式数据并行性,根据GPU的数量来扩展训练批大小。这种方法允许模型在更大的数据集上进行训练,但有一个约束,即所有参数必须适合一个GPU。

模型并行训练可以通过跨多个GPU划分模型来克服这一限制。近年来出现了几个通用模型并行框架,如GPipe和Mesh-TensorFlow。gPipe在不同的处理器上划分层组,而Mesh-TensorFlow使用层内模型并行性。我们的方法在概念上类似于Mesh-TensorFlow,我们关注层内并行性并融合GEMM以减少同步。然而,我们只对现有PyTorch transformer实现进行了一些有针对性的修改,以便使用模型并行性来训练大型transformers。我们的方法很简单,不需要任何新的编译器或代码重新连接来实现模型并行性,并且可以通过插入一些简单的primitives(图2中的f和g 算子)完全实现。

我们利用 transformer网络的结构,通过添加一些同步primitives来创建一个简单的模型并行实现。

transformer层由一个self attention block和一个2层的多层感知器(MLP)组成。我们分别在这两个模块中引入模型并行性。

如图2a所示,这是MLP的结构,由两个GEMM组成,中间有一个GeLU非线性,后面有一个dropout层。我们以列并行方式划分第一个GEMM。这使得GeLU 非线性可以独立地应用于每个分块GEMM的输出。模块中的第二个GEMM沿着行并行化,直接获取GeLU层的输出,不需要任何通信。然后,在将输出传递到dropout层之前,跨GPU减少第二个GEMM的输出。这种方法将MLP block中的GEMM跨GPU分割了,只需要在正向传递(g算子)中执行一个all-reduce操作,在反向传递(f算子)中执行一个all-reduce操作。

图2:(a): MLP, (b):transformer的self attention block。

如图2(b)所示,在self attention block上,我们利用multihead attention操作中的固有并行性,以列并行方式划分与键(K),查询(Q)和值(V)相关联的 GEMM。

这使得我们可以在GPU之间分割每个attention head参数和工作负载,并且不需要任何即时通信来完成self attention。

这种方法对于MLP和self-attention层都融合了两个GEMM的组,消除了中间的同步点,并获得了更好的scaling性能。这使我们能够在一个简单的transformer层中执行所有GEMM,只使用前向路径的2个all reduce和后向路径的2个all reduce,如图3所示。

图3:GPT-2 transformer层的模型并行性。

这种方法实现起来很简单,因为它只需要在向前和向后传递中添加一些额外的all-reduce操作。它不需要编译器,并且与gPipe等方法提倡的那种pipeline模型并行性是正交的。

性能

为了测试我们的实现的计算性能,我们考虑了表1中四组参数的GPT-2模型。

表1:用于scaling 研究的参数。

所有的实验都是在NVIDIA的DGX SuperPOD上进行的,我们使用了多达32台DGX- 2h服务器(总共512个Tesla V100 SXM3 32GB GPU)。该系统针对多节点深度学习应用程序进行了优化,服务器内部GPU之间的带宽为300 GB/s,服务器之间的互连带宽为100 GB/s。

图4显示了模型模型+数据并行性的扩展值。我们在这两种设置中都观察到了出色的扩展数字。例如,8路(8 GPU)模型并行的83亿参数模型实现了77%的线性扩展。模型+数据并行性要求在反向传播步骤之后进一步通信梯度,因此扩展数略有下降。然而,即使是运行在512个GPU上的最大配置(83亿参数),相对于强大的基准单GPU配置(12亿个参数),我们仍然可以实现74%的扩展性。

图4:模型(左)和模型+数据(右)随着GPU的数量并行地进行weak scaling。

最后,我们研究了attention heads对模型并行扩展的影响。为此,我们考虑了83亿参数、具有8路模型并行性的参数配置,并将attention heads的数目从16个改为32个。结果如表2所示。随着attention heads数量的增加,self attention层中的一些GEMM变小,同时softmax中的元素数量增加。这导致了轻微的scaling decrease。未来的研究在设计大型transformer模型时应该警惕这种超参数,平衡模型性能和模型效率。

表2:attention heads 数量对scaling的影响。

GPT-2训练

为了训练GPT-2模型,我们创建了一个从_Reddit_下载的37 GB _WebText_ dataset,它类似于原始GPT-2论文中描述的webtext数据集。数据集最终有810万个url。我们将WebText数据集随机分割为95:5的比例,分别得到训练集和验证集。我们考虑了4种参数规模的模型:3.45亿、7.75亿、25亿和83亿

图5:训练子集的验证困惑度。在对37GB数据集过拟合之后,8.3B模型提前停止了。

图5显示了验证的困惑度(perplexity)。我们发现。最大的83亿参数的语言模型在~6epoch之后开始overfit,一种1 epoch被定义为15200次迭代。我们认为这可以通过使用更大规模的数据集来缓解,类似于XLNet和RoBERTa等最近论文中使用的数据集。

GPT-2评估

为了分析大型语言模型的训练性能,我们在wikitext-103数据集上计算了perplexity,在Lambada数据集上计算了closize风格的预测精度。

正如预期的一样,wikitext perplexity随着模型尺寸的增大而减小,lambada准确率随着模型尺寸的增大而增加(表3)。

表3:wikitext perplexity(越低越好)和Lambada完形精度(越高越好)的评估结果。

结论

在这项工作中,我们在现有的深度学习硬件、软件和模型的基础上,构建了世界上最大的基于transformer的语言模型。

在此过程中,我们成功地突破了传统的单GPU训练的限制,实现了一种简单而高效的模型并行方法,只需对现有PyTorch transformer实现进行少量有针对性的修改。

我们在512台NVIDIA V100 GPU上高效地训练了83亿参数的语言模型(分别比BERT和GPT-2大24倍和5.6倍),具有8路模型并行性,并在整个应用程序中实现了高达15.1千万亿次浮点运算(PetaFLOPS)。

我们发现,与较小的transformer模型相比,更大的transformer模型可以在相同的时间内进行训练,并且可以显著提高性能。

然而,正如我们在工作中所展示的,NLP仍然需要合适的数据集、问题和技术来正确地训练这些大型语言模型,否则会出现过拟合。

我们将我们的工作开源,以便社区就可以复制并扩展它们。

英伟达官方GitHub项目已开源!

英伟达在官方GitHub上对MegatronLM开源了代码,也提供了相应的教程。

项目地址:https://github.com/NVIDIA/Megatron-LM

安装

官方只支持 Python 3.6。请安装支持GPU的最新版本PyTorch。

此外,代码库的一部分利用tensorflow-cpu(可选)执行TFRecords的数据加载以进行BERT训练。

建议要么使用./docker/中提供的Dockerfile,要么创建一个虚拟环境(以避免破坏现有的tf安装)并安装requirements.txt。

代码语言:javascript
复制
1python -m pip install virtualenv
2virtualenv bert_env
3source bert_env/bin/activate
4pip install -r requirements.txt

用法

提供了5个预训练BERT的脚本和3个预训练GPT2的脚本。使用 --save 和 --load 保存并加载模型检查点(checkpoint)。

此外,还提供 GPT2 脚本,用于在wiki文本和LAMBADA上生成GPT2的交互式文本生成和零样本(zero shot)评估。

BERT预训练

代码语言:javascript
复制
1bash scripts/pretrain_bert.sh

此脚本运行单个gpu BERT预训练,主要用于调试目的。优化参数设置为64路分布式训练。

要使用此脚本,请 --train-data以loose json格式放置,每行一个json。json字典的文本字段应该对应于 --text-key。

代码语言:javascript
复制
 1python pretrain_bert.py \
 2       --num-layers 24 \
 3       --hidden-size 1024 \
 4       --num-attention-heads 16 \
 5       --batch-size 4 \
 6       --seq-length 512 \
 7       --max-preds-per-seq 80 \
 8       --max-position-embeddings 512 \
 9       --train-iters 1000000 \
10       --save checkpoints/bert_345m \
11       --load checkpoints/bert_345m \
12       --resume-dataloader \
13       --train-data wikipedia \
14       --lazy-loader \
15       --tokenizer-type BertWordPieceTokenizer \
16       --tokenizer-model-type bert-large-uncased \
17       --presplit-sentences \
18       --cache-dir cache \
19       --split 949,50,1 \
20       --distributed-backend nccl \
21       --lr 0.0001 \
22       --lr-decay-style linear \
23       --lr-decay-iters 990000 \
24       --weight-decay 1e-2 \
25       --clip-grad 1.0 \
26       --warmup .01 \
27       --fp16 \
28       --fp32-embedding

GPT2 预训练

代码语言:javascript
复制
1bash scripts/pretrain_gpt2.sh

此脚本运行单gpu gpt2预训练,主要用于调试目的。优化参数设置为64路分布式训练。

它与前一个脚本格式大致相同,但有一些值得注意的差异:

  • --tokenizer-type已切换为GPT2BPETokenizer;
  • --lr-decay-style已切换为cosine decay等等。

另外,GPT2使用来自BERT的不同参数初始化,用于训练深度残差网络。要使用此初始化来训练BERT,请使用--deep-init。

代码语言:javascript
复制
 1python pretrain_gpt2.py \
 2       --num-layers 24 \
 3       --hidden-size 1024 \
 4       --num-attention-heads 16 \
 5       --batch-size 8 \
 6       --seq-length 1024 \
 7       --max-position-embeddings 1024 \
 8       --train-iters 320000 \
 9       --save checkpoints/gpt2_345m \
10       --load checkpoints/gpt2_345m \
11       --resume-dataloader \
12       --train-data wikipedia \
13       --lazy-loader \
14       --tokenizer-type GPT2BPETokenizer \
15       --cache-dir cache \
16       --split 949,50,1 \
17       --distributed-backend nccl \
18       --lr 0.00015 \
19       --lr-decay-style cosine \
20       --weight-decay 1e-2 \
21       --clip-grad 1.0 \
22       --warmup .01 \
23       --checkpoint-activations \
24       --fp16

更多细节内容,读者可前往官方GitHub浏览:

https://github.com/NVIDIA/Megatron-LM

参考链接:

VB:https://venturebeat.com/2019/08/13/nvidia-trains-worlds-largest-transformer-based-language-model/

TechCrunch:https://techcrunch.com/2019/08/13/nvidia-breaks-records-in-training-and-inference-for-real-time-conversational-ai/

GitHub:https://github.com/NVIDIA/Megatron-LM

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-08-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 【新智元导读】英伟达一举创造了2个壮举!训练出了世界上最大的语言模型——MegatronLM,包含83亿参数,比BERT大24倍,比GPT-2大5.6倍;还打破了实时对话AI的记录,仅耗时53分钟即可训练出行业标准BERT模型、2毫秒就能对答案做出推断!
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档