干货!最全的AI速查表|神经网络,机器学习,深度学习

神经网络

神经网络图

机器学习概述

机器学习: Scikit-learn算法

这个速查表可以帮助你为你的任务找到合适的estimator,这个是工作中最困难的地方。流向图帮助你查找文档,estimator也能大致的帮助你更加好的理解你的问题,以及如何解决问题。

Scikit-Learn

Scikit-learn 是一个开源的机器学习Python库。功能包括分类,回归,聚类,算法包括支持向量机,随机森林,梯度提升,k均值和密度聚类算法。而且和Python的数值处理库如Numpy和SciPy能够互通。

机器学习 : 算法速查表

这是一个来自Microsoft Azure的机器学习速查表,你可以为你的预测任务选取合适的机器学习的算法。首选,速查表会问你数据的形式,然后给你一个适合你的任务的最佳的算法建议。

用Python做数据科学

TensorFlow

在2017年的5月,Google发布了第二代的TPU,第二代的TPU有高达180 teraflops的性能,64个TPU的集群可以提供11.5 petaflops的计算能力。

Keras

在2017年,Google的TensorFlow决定在其核心库中支持Keras。Keras是一套接口,而不是一个机器学习的框架。它提供一套高级的,更加直接的抽象功能,使得配置一个神经网络更加的容易,而不用管背后是哪个计算库。

Numpy

Numpy是一个没有优化过的解释器,目的是用Python来实现CPython中的东西。使用这个版本的数学计算往往比较慢。Numpy提供了多维数组的计算和操作,非常的有效,当需要重用代码时,大部分的内部的循环都是使用Numpy。

Pandas

这个名字是来自于 “panel data”,是一个经济学的词语,用来处理多维度的结构化的数据。

数据整理 data wrangler

"data wrangler"这个词开始于流行文化的渗透。在2017年的电影 Kong: Skull Island,其中一个角色,被介绍为“Steve Woodward, our data wrangler”。

Scipy

Scipy是基于Numpy的数组的对象构建的,是Numpy的一部分,包括的工具如 Matplotlib, pandas and SymPy,还有一个科学计算的扩展库。Numpy和其他的一些科学计算工具如 MATLAB, GNU Octave, and Scilab很像。Numpy的技术栈也有时候叫做SciPy 技术栈。

Matplotlib

matplotlib是一个基于Python的绘图库,是Numpy的一个扩展。提供了面向对象的API。

pyplot是一个matplotlib的模块,提供了类似Matlab的绘图接口,可以像Matlab一样简单易用,而且免费。

资源

数据科学速查表: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics

数据整理速查表: https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

数据整理: https://en.wikipedia.org/wiki/Data_wrangling

Keras速查表: https://www.datacamp.com/community/blog/keras-cheat-sheet#gs.DRKeNMs

Keras: https://en.wikipedia.org/wiki/Keras

机器学习速查表: https://ai.icymi.email/new-machinelearning-cheat-sheet-by-emily-barry-abdsc/

机器学习速查表: https://docs.microsoft.com/en-in/azure/machine-learning/machine-learning-algorithm-cheat-sheet

机器学习速查表: http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html

Matplotlib速查表: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet#gs.uEKySpY

Matpotlib: https://en.wikipedia.org/wiki/Matplotlib

神经网络速查表: http://www.asimovinstitute.org/neural-network-zoo/

神经网络图速查表: http://www.asimovinstitute.org/blog/

神经网络: https://www.quora.com/Where-can-find-a-cheat-sheet-for-neural-network

Numpy速查表: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.AK5ZBgE

NumPy: https://en.wikipedia.org/wiki/NumPy

Pandas速查表: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.oundfxM

Pandas: https://en.wikipedia.org/wiki/Pandas_(software)

Pandas速查表: https://www.datacamp.com/community/blog/pandas-cheat-sheet-python#gs.HPFoRIc

Scikit速查表: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet

Scikit-learn: https://en.wikipedia.org/wiki/Scikit-learn

Scikit-learn速查表: http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html

Scipy速查表: https://www.datacamp.com/community/blog/python-scipy-cheat-sheet#gs.JDSg3OI

SciPy: https://en.wikipedia.org/wiki/SciPy

TesorFlow速查表: https://www.altoros.com/tensorflow-cheat-sheet.html

原文链接:https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463

原文发布于微信公众号 - 小小挖掘机(wAIsjwj)

原文发表时间:2019-10-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券