前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >由表达矩阵看内部异质性

由表达矩阵看内部异质性

作者头像
生信技能树jimmy
发布2020-03-31 12:12:37
5720
发布2020-03-31 12:12:37
举报
文章被收录于专栏:单细胞天地单细胞天地
第二单元第四讲:得到表达矩阵后看内部异质性

依然是主要代码跟着流程走,这里只写一写我认为比较重要的内容

上次我们得到了原始表达矩阵a,过滤后的表达矩阵dat ,样本信息meata

简单看下:

代码语言:javascript
复制
> dim(a)
[1] 24582   768
> dim(dat)
[1] 12198   768
> head(meta)
               g plate  n_g all
SS2_15_0048_A3 1  0048 2624 all
SS2_15_0048_A6 1  0048 2664 all
SS2_15_0048_A5 2  0048 3319 all
SS2_15_0048_A4 3  0048 4447 all
SS2_15_0048_A1 2  0048 4725 all
SS2_15_0048_A2 3  0048 5263 all
# 样本信息中的g表示cutree分的4大聚类结果;plate为细胞板批次;n_g是每个细胞样本中有表达的基因数量;all暂时用不到

另外,注意最好每次运行代码之前,都要清空一下变量,然后设置不要将字符型变成因子型向量

代码语言:javascript
复制
rm(list = ls())  
options(stringsAsFactors = F)

热 · 图

先构建分组信息,也就是提取出层次聚类信息

需要注意一点,count的表达矩阵和rpkm表达矩阵的聚类分组结果是不一样的

代码语言:javascript
复制
# 我们这里是count表达矩阵分组
> grp=meta$g
> table(grp)
grp
  1   2   3   4 
312 300 121  35 
然后想想,热图需要什么信息?

主要就是行、列,行是基因,列是样本。那么先对基因(行)进行设置:

因为dat矩阵相对于a虽然过滤掉了一万多基因,但是依然还剩一万多,然后我们有700多样本,那么可以算一下,这样的结果是10000*700的图,相当大,并且看不出什么含义。我们可以将基因数设置小一点,可以设置成1000,先看一下

好了,基因数有了(1000个),但是取哪1000个基因呢?很显然,利用headtail直接取前/后1000个基因是不能使人信服的,这里可以用sd 进行筛选,也就是取表达量标准差最大的1000个基因(也即是说,这1000个基因在所有的样本中表达差异最大,这样更像差异表达基因)

代码语言:javascript
复制
tail(sort(apply(dat,1,sd)),1000)
# 解释下代码:从里向外看=》apply对dat矩阵的每一行求sd值,然后用sort排序,默认从小到大,然后用tail从后到前,也即是从大到小取1000个
# 最后取出基因名
top_g=names(tail(sort(apply(dat,1,sd)),100))
> head(top_g)
[1] "Comt"    "Mrgprf"  "Stard13" "Cdipt"   "Ifnar1"  "Pdcd6ip"
画第一张热图

1000基因 X 768个细胞 = 70多万的点

这个热图反映了log2(cpm+1)的表达量,范围是0-15

代码语言:javascript
复制
library(pheatmap)
pheatmap(dat[top_g,],show_colnames =F,show_rownames = F,
           filename = 'all_cells_top_1000_sd.png')
热图基础上增加归一化

上面?那个图,可以看出基因绝对表达量 ,颜色越偏红色表示绝对表达量越高,比如顶部那些基因的表达量就是要比底部那些基因的高

但是,有个问题,这样会受到某些特高表达基因的影响,导致其他基因的差异就不明显;另外,我们真正关心的是一个基因在不同样本中的差异,是一种相对的表达量。

可以这么理解:有的基因本身就是表达量小,但不能因为小就认为它在每个样本都是一样的。虽然小,也是有差异的小。但往往这种差异会由于"强者"的存在而被忽视。因此,这里我们要做的,就是将这种"弱小"的差异给拎出来

主要利用scale() ,先理解一下:

代码语言:javascript
复制
# 构建一个测试数据
x=1:10;plot(x)
scale(x);plot(scale(x))# 结果就是变成从-1.4到+1.4的范围

可以看到,scale后并不改变数据分布,只是修改了坐标,让结果取值更加集中

注意:scale是对列进行操作,而我们是想对基因(也就是按行操作),这个函数有两个主要的选项:centerscale ,其中center是将每列的元素减去这一列的均值(这个选项是默认TRUE的);scale 是在center操作后,再将处理过的元素除以标准差(同样是默认TRUE的)。另外,处理完别忘了再转换回来

代码语言:javascript
复制
n=t(scale(t(dat[top_g,])))
画个新的热图

可以看到之前热图显示的坐标范围是0- 15,当然这里我们可以设置上限、下限,比如可以将上限设为2,下限设为-2

代码语言:javascript
复制
n[n>2]=2
n[n< -2]= -2

范围设置好以后,可以再将分组信息grp加上去

最后设置pheatmap的选项:

代码语言:javascript
复制
    pheatmap(n,
             show_colnames =F, #不显示列名
             show_rownames = F, #不显示行名
             annotation_col=anno_col, # 在列上加注释(也就是分组信息)
             filename = 'all_cells_top_1000_new.png')

可以看到这张图和画的第一张图的区别是:出现了一些红色,说明新出现了一些基因在某些样本中高表达,并且很明显。但是仍然很有可能它们的实际表达量并不高,仅仅是玩了一个"样本排位赛“(即使数值再小,也有甲乙丙丁)

关于分组有一点奇怪

可以看到这里的分组信息有点散乱,想到:这里使用的anno_col 是利用grp得到的,而grp是基于一万多基因的dat矩阵得到的(回忆下第5篇内容)

因此这里的分组信息可以更新一下,基于我们这里的top1000基因,只需要将原来的dat换成现在的n矩阵就好,依然选取前4个聚类分群

代码语言:javascript
复制
# 将原来dat换为n
hc=hclust(dist(t(n)))
clus = cutree(hc, 4)
top1000_grp=as.factor(clus)
> table(top1000_grp)
top1000_grp
  1   2   3   4 
462 166  42  98 

看一下当前基于1000个基因的前4组和原来基于所有基因的前4组之间重合度,虽然他们总和一样,都是1000,而且也都是按照1-4的顺序排列,但实际上背后的意义千差万别

代码语言:javascript
复制
> table(top1000_grp,grp)
           grp
top1000_grp   1   2   3   4
          1 167 295   0   0
          2   7   3 121  35
          3  42   0   0   0
          4  96   2   0   0

举个例子,有462个基因属于新分组的1号组,但其中有295个属于原来分组的2号组(这个数量超过了原来分组的1号组),可以看出新分组和原分组的重合度并不高,因此更加说明我们重新分组的重要性

代码语言:javascript
复制
new_anno_col=data.frame(g=top1000_grp)
rownames(new_anno_col)=colnames(n)
 pheatmap(n,
             show_colnames =F, #不显示列名
             show_rownames = F, #不显示行名
             annotation_col=new_anno_col, # 在列上加注释(也就是分组信息)
             filename = 'all_cells_top_1000_new_2.png')

PCA · 图

之前好不容易过滤得到的dat矩阵,不能因为下面分析的失误被"污染",因此再进行下一个分析之前先做一个数据备份是个好习惯

代码语言:javascript
复制
dat_bk=dat
# 然后我们就能放心对dat进行操作了
dat=t(dat)
dat=as.data.frame(dat)
dat=cbind(dat,grp)

PCA分析需要行是样本,列是基因表达量的数据框(和聚类一样,是对行/样本进行操作,最后做的图中一个点就表示一个样本/细胞)

最后用PCA进行计算分析,用fviz_pca_ind函数进行可视化

这里用到的分组还是之前基于全部基因进行聚类的cutree结果

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-07-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 单细胞天地 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 先构建分组信息,也就是提取出层次聚类信息
  • 然后想想,热图需要什么信息?
  • 画第一张热图
  • 热图基础上增加归一化
  • 画个新的热图
  • 关于分组有一点奇怪
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档