前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >手机扫一扫,现实物体隔空「复制粘贴」进电脑!

手机扫一扫,现实物体隔空「复制粘贴」进电脑!

作者头像
代码医生工作室
发布2020-05-14 15:59:43
1.7K0
发布2020-05-14 15:59:43
举报
文章被收录于专栏:相约机器人
十三 白交 发自 凹非寺 量子位 报道 | 公众号 QbitAI

魔法变现实,酷炫又实用。

还记得两年前,Zach King(男巫)的爆红魔术吗?

不仅从纸直接蹦出一个手机,还直接扔进了电脑里形成虚拟的天猫页面。

现在,不用去羡慕男巫了,人人都可以把身边的东西“扔到”电脑里,而且一部手机就能搞定!

这就是来自34岁法国设计师Cyril Diagne的最新AR黑科技——AR Cut & Paste,将身边的事物“一键”复制粘贴到电脑上,整个完成时间不到10s。

比Ctrl+C和Ctrl+V还要爽快!

比如,拿手机扫一扫书上的模型图片,再把手机对准电脑屏幕,模型瞬间就复制到了电脑。

书上的人物也不在话下。

就有网友说道:连这个黑发小哥的头发都能识别出来,太神奇了。

当然,手写的笔记,也可以复制粘贴到电脑中。

他在Github上分享了他的AR新技术,已经狂揽7K颗小星星;而且在Reddit上分享不到14小时,就获得了近4K的点赞量。

即使Cyril表示目前仅仅能在Photoshop中实现,但未来——肯定会有更多不同的输出方式。

只是现在,这项AR黑科技——魔法一样的新技术,只要你想,也能复刻。

简单四步,开启“复制粘贴”新世界

小哥非常热心地在GitHub中,描述了AR Cut & Paste的“上手指南”。

首先要强调的是,这是一个研究原型,而不是针对消费者或者Photoshop用户的工具。

AR Cut & Paste原型包含3个独立的模块。

移动应用 (The mobile app)

  • 可以查看GitHub中/app文件夹,了解如何将App部署到手机中。

本地服务器 (The local server)

  • 手机APP与Photoshop的接口。
  • 使用屏幕点(screenpoint)找到摄像机在屏幕上指向的位置。
  • 可查看/server文件夹,了解关于本地服务器的配置说明。

目标检测 / 背景移除服务 (The object detection / background removal service)

  • 目前,显著性检测和背景移除,是委托给一个外部服务来完成。
  • 如果直接在移动应用中使用类似DeepLap这样的技术会简单很多。但这还没有在这个repo中实现。

第一步:配置Photoshop

在Photoshop软件首选项 (Preferences)中,找到增效工具 (Plug-ins)。

点击启用远程连接 (Remote Connection),并设置密码。

这里需要确保一点,PS文档中的设置要与server/src/ps.py中的设置一致,否则只会粘贴一个空层。

此外,文档需要一些背景,如果只是白色背景,SIFT可能没有足够能力来做一个正确的匹配。

第二步:设置外部显著性目标检测服务

如上所述,目前,必须使用BASNet-HTTP封装器(需要CUDA GPU)作为外部HTTP服务,部署BASNet模型。

将需要部署的服务URL来配置本地服务器。如果在本地服务的同一台计算机上运行BASNet,请确保配置不同的端口。

第三步:配置并运行本地服务器

这一步的详细文档,在GitHub项目中的/server文件夹中,包含“安装”和“运行”两个步骤。

安装代码如下:

代码语言:javascript
复制
virtualenv -p python3.7 venv
source venv/bin/activate
pip install -r requirements.txt

运行代码如下:

代码语言:javascript
复制
python src/main.py \
   —basnet_service_ip=”http://X.X.X.X“ \
   —basnet_service_host=”basnet-http.default.example.com” \
   —photoshop_password 123456

其中,BASNET_SERVICE_HOST是可选的,只有在使用Knative / Cloud Run等入口网关在平台上部署服务时才需要。

以及,用Photoshop远程连接密码替换123456。

第四步:配置并运行移动App

安装代码如下:

代码语言:javascript
复制
npm install

然后更新component/Server.tsx中的IP地址,使其指向运行本地服务器的计算机IP:

代码语言:javascript
复制
3: const URL = “http://192.168.1.29:8080“;

运行代码如下:

代码语言:javascript
复制
npm start

OK!开启“复制粘贴”新世界,就是这么简单!

但如果你希望“知其然更知其所以然”,别眨眼,接着往下看。

如何做到隔空「复制粘贴」?

这个神奇的AR黑科技背后的主要技术,刚开始采用的是一个叫做BASNet的显著目标检测方法。

这篇研究入围了CVPR 2019,而且论文一作还是位华人小哥哥——秦雪彬,已经于今年2月在加拿大阿尔伯塔大学拿到了博士学位,硕士就读于北京大学。

BASNet的核心框架如下图所示,主要由2个模块组成:

第一个模块是预测模块,这是一个类似于U-Net的密集监督的Encoder-Decoder网络,主要功能是从输入图像中学习预测saliency map。

第二个模块是多尺度残差细化模块(RRM),主要功能是通过学习残差来细化预测模块得到的Saliency map,与groun-truth之间的残差,从而细化出预测模块的Saliency map。

而最近,这位设计师小哥哥在此基础上,针对背景移除任务,采用了更新的方法。

同样是来自秦雪彬团队,被Pattern Recognition 2020接收,这个方法叫做U2-Net,其框架如下图所示:

还与其它20个SOTA方法分别做了定量和定性比较实验,在结果上都取得了不错的结果。

在下面的定性实验中,也可以比较明显的看到,该方法所提取出来的目标,更加细粒度和精确。

那么,北大校友的新方法,又是如何被法国设计师Cyril Diagne搞成黑科技应用的?

兼职写代码的法国设计师

原因无他,Cyril Diagne就是这样一个懂程序、搞设计,关注前沿研究进展的艺术家呀。

如果你关注他的社交动态,也都是天马行空的。

是那种从“诗词歌赋”到“人生哲学”,从“服装设计”到AR黑科技的妙人。

Cyril Diagne,现居法国巴黎,除了设计师,程序员,还是洛桑艺术州立大学(ECAL)媒体于交互设计系的教授及主管。

2008年从巴黎Les Gobelins学校毕业以后,跟5位同学创立了艺术机构,致力于实现科技与艺术之间的创意交互,也奠定了他以后的艺术生涯,注定与科技密不可分。

2015年起,Cyril加入了谷歌文化驻巴黎的实验室。

与此同时,他还不断的在Gitbub上分享他的新成果。此前,他就曾在Github上发布了一些实用的小工具。

比如,一个可在Instagram页面的照片上添加3D效果的chrome扩展程序。

在Web浏览器上直接用AR涂鸦你的脸。

输入图像转3D照片。

总之,想法多、经历丰富,还懂技术和审美……

所以现在搞出AR复制这样的奇妙应用,打开一扇新大门,也让一众网友服服气气。

也算是把北大校友小哥的牛X研究,推到了更牛X的产品应用入口。

虽然还只是牛刀小试,但前景却妥妥无限可能。

你觉得这项黑科技,还能怎么用?怎么玩?

上手传送门:

https://github.com/cyrildiagne/ar-cutpaste/tree/clipboard

https://github.com/NathanUA/U-2-Net

http://openaccess.thecvf.com/content_CVPR_2019/papers/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.pdf

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-05-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 相约机器人 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简单四步,开启“复制粘贴”新世界
    • 第一步:配置Photoshop
      • 第二步:设置外部显著性目标检测服务
        • 第三步:配置并运行本地服务器
          • 第四步:配置并运行移动App
          • 如何做到隔空「复制粘贴」?
          • 兼职写代码的法国设计师
          相关产品与服务
          图像识别
          腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档