专栏首页机器人课程与技术ROS机器人TF基础(坐标相关概念和实践)

ROS机器人TF基础(坐标相关概念和实践)

TF坐标变换基础

机器人建模和控制必须掌握坐标系和坐标变换等基础知识。机器人在空间中运动主要有两种形式:

  • 平移和旋转

也就是线速度和角速度。

坐标关系不仅包括机器人和外部环境,也包括机器人自身各部件,如本体,传感器(摄像头),控制器,执行器(电机)等。

TF概念如下图所示:

在日常生活中,如果将现实环境建立数学或物理模型必然也离不开坐标系,如下图:

常见的如GPS全局坐标,室内定位局部坐标等,在机器人领域示例如下:

教程不仅有理论介绍,还有云平台实践环境:

分别展示了两款机器人模型中的TF。

下面我们先把坐标系基本概念过一遍:

 示例演示:

  • roslaunch turtle_tf2 turtle_tf2_demo_cpp.launch

使用键盘控制控制第一个turtle,第二个跟随,如下图所示:

<launch>

  <!-- Turtlesim Node-->
  <node pkg="turtlesim" type="turtlesim_node" name="sim"/>

  <node pkg="turtlesim" type="turtle_teleop_key" name="teleop" output="screen"/>
  <!-- Axes -->
  <param name="scale_linear" value="2" type="double"/>
  <param name="scale_angular" value="2" type="double"/>

  <node name="turtle1_tf2_broadcaster" pkg="turtle_tf2" type="turtle_tf2_broadcaster" respawn="false" output="screen" >
    <param name="turtle" type="string" value="turtle1" />
  </node>
  <node name="turtle2_tf2_broadcaster" pkg="turtle_tf2" type="turtle_tf2_broadcaster" respawn="false" output="screen" >
    <param name="turtle" type="string" value="turtle2" />
  </node>
  <node name="turtle_pointer" pkg="turtle_tf2" type="turtle_tf2_listener" respawn="false" output="screen" >
  </node>

</launch>

注意:由于noetic版本仅支持python3。

为了更方便的调试和查看坐标,ROS-TF2提供了大量的工具:

import rospy
import tf2_py as tf2
import yaml
import subprocess
from tf2_msgs.srv import FrameGraph
import tf2_ros

def main():
    rospy.init_node('view_frames')
    
    # listen to tf for 5 seconds
    rospy.loginfo('Listening to tf data during 5 seconds...')
    rospy.sleep(0.00001)
    buffer = tf2_ros.Buffer()
    listener = tf2_ros.TransformListener(buffer)
    rospy.sleep(5.0)

    rospy.loginfo('Generating graph in frames.pdf file...')
    rospy.wait_for_service('~tf2_frames')
    srv = rospy.ServiceProxy('~tf2_frames', FrameGraph)
    data = yaml.safe_load(srv().frame_yaml)
    with open('frames.gv', 'w') as f:
        f.write(generate_dot(data))
    subprocess.Popen('dot -Tpdf frames.gv -o frames.pdf'.split(' ')).communicate()

def generate_dot(data):
    if len(data) == 0:
        return 'digraph G { "No tf data received" }'

    dot = 'digraph G {\n'
    for el in data: 
        map = data[el]
        dot += '"'+map['parent']+'" -> "'+str(el)+'"'
        dot += '[label=" '
        dot += 'Broadcaster: '+map['broadcaster']+'\\n'
        dot += 'Average rate: '+str(map['rate'])+'\\n'
        dot += 'Buffer length: '+str(map['buffer_length'])+'\\n' 
        dot += 'Most recent transform: '+str(map['most_recent_transform'])+'\\n'
        dot += 'Oldest transform: '+str(map['oldest_transform'])+'\\n'
        dot += '"];\n'
        if not map['parent'] in data:
            root = map['parent']
    dot += 'edge [style=invis];\n'
    dot += ' subgraph cluster_legend { style=bold; color=black; label ="view_frames Result";\n'
    dot += '"Recorded at time: '+str(rospy.Time.now().to_sec())+'"[ shape=plaintext ] ;\n'
    dot += '}->"'+root+'";\n}'
    return dot


if __name__ == '__main__':
    main()

 坐标为静态关系:

坐标为动态关系:

 坐标与时间关系:

坐标与机器人关系:

这个坐标变换TF2工具的意义如上所示,但是可能会觉得不是很清楚,下面举个例子:

观察上图绿点的位置,通常我们需要机器人本体坐标,但是传感器并非安装在本体中心,而传感器获取的各类信息都是相对传感器的数据,而非机器人本体,TF2工具可以直接维护这些位置姿态坐标关系,将其转换为机器人本体坐标。

tf2常用功能包:

examples-tf2-py: 使用tf2库的Python API示例。

geometry2: 用于在ros,tf2中引入默认软件包第二代坐标变换库的元软件包。

robot-state-publisher: 状态发布后,对于使用tf2的系统中的所有组件都可用。 该包使用机器人的运动学树模型将机器人的关节角度作为输入,并发布机器人链接的3D姿势。

ros-base: 一个扩展“ ros_core”并包含其他基本功能(如tf2和urdf)的软件包。

tf2: tf2保持时间缓冲的树结构中的坐标系之间的关系,并允许用户在任意所需的时间点在任意两个坐标系之间转换点,向量等。

tf2-ros: 该软件包包含适用于Python和C ++的tf2库的ROS绑定。

其他库:tf2-bullet, tf2-eigen, tf2-geometry-msgs, tf2-kdl, tf2-msgs, tf2-py, tf2-sensor-msgs, tf2-tools。

机器人模型与TF2工具应用案例:

ROS1(noetic,melodic,kinetic,indigo):

注意:xacro,sdf等格式适合Gazebo,urdf格式适合rviz。

rosrun xacro xacro -o model_out.urdf model_in.urdf.xacro

使用如下命令打开一个机器人模型(此处不要求掌握,后续详细介绍):

roslaunch robot1_description display.launch model:=robot1_base1.urdf

rqt-tf-tree:

rosrun tf2_tools echo.py base_link wheel_1

rosrun tf2_tools view_frames.py

ROS2(foxy,dashing):

机器人urdf模型通用!!!

ros2 launch urdf_tutorial display.launch.py model:=src/urdf/robot1_base1.urdf

下图和ros1几乎一样:

同样也能使用各类工具:

ros2 run tf2_tools view_frames.py

ROS1和ROS2几乎一致!

下一节,将通过URDF构建机器人模型,以ROS2(foxy)讲解为主!主要是ROS1相关URDF功能如何顺利移植到ROS2中!

附录(ros2 foxy):

display.launch.py

import launch
from launch.substitutions import Command, LaunchConfiguration
import launch_ros
import os


def generate_launch_description():
    pkg_share = launch_ros.substitutions.FindPackageShare(package='urdf_tutorial').find('urdf_tutorial')
    default_model_path = os.path.join(pkg_share, 'urdf/01-myfirst.urdf')
    default_rviz_config_path = os.path.join(pkg_share, 'rviz/urdf.rviz')

    robot_state_publisher_node = launch_ros.actions.Node(
        package='robot_state_publisher',
        executable='robot_state_publisher',
        parameters=[{'robot_description': Command(['xacro ', LaunchConfiguration('model')])}]
    )
    joint_state_publisher_node = launch_ros.actions.Node(
        package='joint_state_publisher',
        executable='joint_state_publisher',
        name='joint_state_publisher',
        condition=launch.conditions.UnlessCondition(LaunchConfiguration('gui'))
    )
    joint_state_publisher_gui_node = launch_ros.actions.Node(
        package='joint_state_publisher_gui',
        executable='joint_state_publisher_gui',
        name='joint_state_publisher_gui',
        condition=launch.conditions.IfCondition(LaunchConfiguration('gui'))
    )
    rviz_node = launch_ros.actions.Node(
        package='rviz2',
        executable='rviz2',
        name='rviz2',
        output='screen',
        arguments=['-d', LaunchConfiguration('rvizconfig')],
    )

    return launch.LaunchDescription([
        launch.actions.DeclareLaunchArgument(name='gui', default_value='True',
                                             description='Flag to enable joint_state_publisher_gui'),
        launch.actions.DeclareLaunchArgument(name='model', default_value=default_model_path,
                                             description='Absolute path to robot urdf file'),
        launch.actions.DeclareLaunchArgument(name='rvizconfig', default_value=default_rviz_config_path,
                                             description='Absolute path to rviz config file'),
        joint_state_publisher_node,
        joint_state_publisher_gui_node,
        robot_state_publisher_node,
        rviz_node
    ])

robot1_base1.urdf

<?xml version="1.0" ?>

<robot name="robot1_xacro" xmlns:controller="http://playerstage.sourceforge.net/gazebo/xmlschema/#controller" xmlns:interface="http://playerstage.sourceforge.net/gazebo/xmlschema/#interface" xmlns:sensor="http://playerstage.sourceforge.net/gazebo/xmlschema/#sensor">
  <link name="base_footprint">
    <visual>
      <geometry>
        <box size="0.001 0.001 0.001"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
    </visual>
    <inertial>
      <mass value="0.0001"/>
      <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
    </inertial>
  </link>
  <gazebo reference="base_footprint">
    <material>Gazebo/Green</material>
    <turnGravityOff>false</turnGravityOff>
  </gazebo>
  <joint name="base_footprint_joint" type="fixed">
    <origin xyz="0 0 0"/>
    <parent link="base_footprint"/>
    <child link="base_link"/>
  </joint>
  <link name="base_link">
    <visual>
      <geometry>
        <box size="0.2 .3 .1"/>
      </geometry>
      <origin rpy="0 0 1.54" xyz="0 0 0.05"/>
      <material name="white">
        <color rgba="1 1 1 1"/>
      </material>
    </visual>
    <collision>
      <geometry>
        <box size="0.2 .3 0.1"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="10"/>
      <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
    </inertial>
  </link>
  <link name="wheel_1">
    <visual>
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
      <material name="black">
        <color rgba="0 0 0 1"/>
      </material>
    </visual>
    <collision>
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="1"/>
      <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
    </inertial>
  </link>
  <link name="wheel_2">
    <visual>
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
      <material name="black"/>
    </visual>
    <collision>
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="1"/>
      <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
    </inertial>
  </link>
  <link name="wheel_3">
    <visual>
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
      <material name="black"/>
    </visual>
    <collision>
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="1"/>
      <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
    </inertial>
  </link>
  <link name="wheel_4">
    <visual>
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
      <material name="black"/>
    </visual>
    <collision>
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="1"/>
      <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
    </inertial>
  </link>
  <joint name="base_to_wheel1" type="continuous">
    <parent link="base_link"/>
    <child link="wheel_1"/>
    <origin rpy="1.5707 0 0" xyz="0.1 0.15 0"/>
    <axis xyz="0 0 1"/>
  </joint>
  <joint name="base_to_wheel2" type="continuous">
    <axis xyz="0 0 1"/>
    <anchor xyz="0 0 0"/>
    <limit effort="100" velocity="100"/>
    <parent link="base_link"/>
    <child link="wheel_2"/>
    <origin rpy="1.5707 0 0" xyz="-0.1 0.15 0"/>
  </joint>
  <joint name="base_to_wheel3" type="continuous">
    <parent link="base_link"/>
    <axis xyz="0 0 1"/>
    <child link="wheel_3"/>
    <origin rpy="1.5707 0 0" xyz="0.1 -0.15 0"/>
  </joint>
  <joint name="base_to_wheel4" type="continuous">
    <parent link="base_link"/>
    <axis xyz="0 0 1"/>
    <child link="wheel_4"/>
    <origin rpy="1.5707 0 0" xyz="-0.1 -0.15 0"/>
  </joint>
</robot>

~Fin~


本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • ROS机器人URDF建模

    所有内容均在ROS1 indigo,kinetic,melodic,noetic以及ROS2 dashing,foxy等测试通过。

    zhangrelay
  • ROS专题----机器人模型urdf简明笔记

    版权声明:本文为zhangrelay原创文章,有错请轻拍,转载请注明,谢谢... ht...

    zhangrelay
  • 动手搭建自己第一台基于ROS2-Arduino的SLAM小车

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...

    zhangrelay
  • JS中 toString() & valueOf()

    toString()可以看做是把一个数据转换成了相应字符串的形式,安照这个转换规则中

    书童小二
  • JS-检测浏览器类型及版本

    xing.org1^
  • 利用 nodeJS 搭建一个简单的Web服务器

    在服务器根目录下打开 cmd 并运行 node WebServer 命令,然后在浏览器中输入 http://localhost:8124/ 即可查看。

    梦_之_旅
  • JustMock .NET单元测试利器(二)JustMock基础

    JustMock API基础 Mock是Telerik®JustMock框架中的主要类。Mock用于创建实例和静态模拟,安排和验证行为。 本文将介绍 “Mock...

    码农阿宇
  • SceneKit - 你必须掌握的优化性能方案

    第一个壶的表面是由256多边形组成的 第二个壶的表面由1024个多边形组成的 第三个壶的表面是由14400个表面组成的

    酷走天涯
  • ubantu下su命令Authentication failure失败的解决方式

    Tencent JCoder
  • 基于运动和区域感知对抗学习的热成像坠落检测(CS CV)

    自动坠落检测技术是保证人体健康和安全的关键技术。 基于家庭的摄像系统用于探测坠落,经常使人们的隐私处于危险之中。 热成像摄像头可以部分 / 完全模糊面部特征,从...

    用户7095611

扫码关注云+社区

领取腾讯云代金券