前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据驱动业务,说的好听,做好很难!得这样才行

数据驱动业务,说的好听,做好很难!得这样才行

作者头像
接地气的陈老师
发布2020-10-10 11:12:01
5340
发布2020-10-10 11:12:01
举报
文章被收录于专栏:接地气学堂

问题场景:

某零售公司,同时有线下门店和线上自营微商城,现在大老板要求运营部门“提升同时在两个平台下单用户比例”。运营总监表示:“数据驱动业务,请数据小组给出清晰的指引”。你是这个公司的数据分析师,问:这时候该做啥事?

1

难点解析

你会不会这么干:

  • 计算同时下单的用户人数、占比、增长率
  • 计算同时下单的用户人均付费金额,付费频次
  • 对比同时下单的用户VS单一渠道下单用户购买产品top10
  • 对比同时下单的用户VS单一渠道下单用户的性别,年龄,地区
  • ……

做完以上事情,你是否有一种深深的无力感

是滴,这就是数据驱动业务的最大难点:数据不能直接得出一个业务动作。同时下单用户女性占比60%,单一渠道女性占比55%,所以同时下单的女性多出5%,所以呢?所以要推女性?这思路也太白痴了吧!仅仅多了5个点而已,能说明什么!其他维度对比分析也是类似。可能最接近直接导出结论的,是看购买商品排名,哪个卖的多推哪个吗。然而实际情况,很容易被业务喷的渣渣都不剩的(如下图)。

很多同学做到这就就开始迷茫,于是上网找“头腾阿公司的大神,可付费!”,搜《21天精通线上线下同时下单分析》pdf版等等病急乱投医行为又冒出来了。

2

破题关键

破题的关键,在于:把业务动作和数据关联起来。用数据论证判断,在行动中收集数据,这样才能让数据和业务结合起来。比如眼前的任务,注意审题,老板只给了个方向:提升两平台同时下单人数,至于到底现在是多少,提升到多少?为什么要提升?一点信息都没给。

所以这时候,第一位的任务是:清晰方向。还轮不到想具体方案的时候。而有方案有关的判断,首先是:到底要不要干。注意,老板没有提具体数字,很可能他只是朦胧的感觉到应该这么说,因此“要干”“不干”两个正反结论,都可以用数据验证(如下图)。

类似的,可以把整个决策过程中所有判断,都列成待验证假设的形式,这样就能把“目前用户占比20%,每月增长5万,75%会持续同时下单”这种纯数据罗列,转换成:“目前有空间可以做,增速不高,有规律可循”这种对业务有意义的结论。这样就能持续的利用数据往下推导了。同一个问题,也能从不同角度多方向论证,具体思路同学们可以自己细想。

假设目前的情况就是:“以线下门店下单为主,线上少,目前有空间可以做,增速不高,有规律可循”下一步可以怎么做呢?既然是有规律,就得看是什么规律。这里需要用到对比。注意,做对比和乱对比是两码事,不是说列出一堆柱子看哪根高就放哪根,而是要围绕自己的分析假设来。比如用户不到零售门店,反而去微商城下单的背后,可能有4种规律,因此可以分别找对应维度数据来验证(如下图)。

因为目前尚在探索方向阶段,所以要尽可能把影响大方向判断的细分问题,都提前梳理清楚,比如:

  • “同时下单”的标准具体是什么如何?
  • 目前符合标准的人有多少?
  • 符合标准的人在持续增加、减少、不变?
  • 符合标准的人比不符合标准的人,在质量、行为上有何差异?
  • 符合标准的人和不符合标准的人,是演化关系还是压根两群人?
  • 为什么希望提高“同时下单”人群?

做完这些功课,再去和业务/老板沟通,比憨憨的问:”“为什么?”要有意义的多。很多憨逼直接去问一堆“为什么”,结果被人劈头盖脸喷回来:“要你何用!”“长脑子没!”“分析了啥!”。而有了功课,可以:

1、可以主动猜行动目的,猜对了立马能让大家觉得你很懂业务

2、可以主动提示验证结果,不管成立/不成立,都说明你思考很细

3、可以主动引导方向,告诉大家有哪几种规律可循,显得分析能落地

总之,老板们最喜欢自己提个粗略想法,下属做了一堆非常细致的工作。很多混的好的数据分析师,都是靠这种手段上位的,切记切记。

3

数据驱动业务的落地方法

然而光有方向还是不行的,很多业务喜欢喊:落地。那该咋落地呢?注意,在落地上,数据分析方法不能直接产生创意,更多是总结过往结果,测试创意效果。而业务方的行动可以直接产生创意,并不一定需要数据支持。

比如线上线下同时下单这事,如果业务方推出:线上下单门店周边2公里内免费送货服务,那很有可能线上订单大涨。如果过去没做过,或者做过但是没有回收数据,那巧妇也难为无米之炊,怎么都分析不出来怎么干的。

对全新的方案,需要具体执行细节加测试,才能真正确认效果。比如周边2公里内免费送货服务,如果是全新的业务,需要业务方给出细案,才能做测试。

所以,在落地阶段,最关键的问题是:

1、是否之前有做过相关动作?

2、如果做过,效果如何,投入产出比如何?

3、如果没做过,是因为没想过,还是想过觉得有障碍?障碍是什么?

4、同行是怎么做的,能打听到的效果是什么?

5、是否已经有初步计划,如果有,是什么?

同设定方向阶段相同,这五个问题首先是数据分析师自己问自己的。所谓的对业务敏感,平时要多收集活动公告,版本更新信息,之后落地的思路就很清晰了。简单的说,就是:已有大量行动情况下,做调优,优选最佳行动路线;尚无大量行动情况下,做测试,探索可行道路。

当然,很有可能你这么干了,你的业务还是喊:不具体!要求数据给出来的方案,具体到有几个页面,页面几个按钮,页面代码怎么写,活动海报怎么画,是画3笔还是5笔……如果真的把这些业务工作都甩给数据,数据分析大可以直接建议:建议更换有能力做海报、做h5的业务。甚至可以结合招聘信息进一步分析:有这些能力的业务月薪也就8-12K,炒了现在这帮傻逼更划算,谢谢。

4

小结

当然,执行阶段,数据也能做监测,也能诊断问题。在复盘阶段,也能总结经验。这些都是能做的驱动动作。

之所以着重强调策划阶段与设计阶段,是因为“数据驱动业务”在这两个阶段范的错误最多。常常是:

策划阶段,数据分析师闭门造车,不结合业务,不分清目标,盲目指望“超牛逼模型”“全国统一模板”能理清问题。

设计阶段,业务部门盲目甩锅,啥都依赖数据,没主见没想法,恨不得数据把自己的工作全干了,不然就喊:不具体。

细化拆解决策流程,用数据去伪存真,一步步从粗到细,才是正道。本篇主要讲的还是策划阶段,想看设计阶段的数据驱动方式,本篇集齐60在看,分享一个生鲜行业的例子哦,敬请期待。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-09-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 接地气学堂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档