前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >BERT模型详解

BERT模型详解

作者头像
用户1432189
发布2020-10-27 11:01:40
1.7K0
发布2020-10-27 11:01:40
举报
文章被收录于专栏:zingpLiuzingpLiu

1 简介

  • BERT全称Bidirectional Enoceder Representations from Transformers,即双向的Transformers的Encoder。是谷歌于2018年10月提出的一个语言表示模型(language representation model)。

1.1 创新点

  • 预训练方法(pre-trained):
    • 用Masked LM学习词语在上下文中的表示;
    • 用Next Sentence Prediction来学习句子级表示。

1.2 成功

  • 强大,效果好。出来之时,在11种自然语言处理任务上霸榜。
image
image

2 模型

2.1 基本思想

  • Bert之前的几年,人们通过DNN对语言模型进行“预训练”,得到词向量,然后在一些下游NLP任务(问题回答,自然语言推断,情感分析等)上进行了微调,取得了很好的效果。
  • 对于下游任务,通常并不是直接使用预训练的语言模型,而是使用语言模型的副产物--词向量。实际上,预训练语言模型通常是希望得到“每个单词的最佳上下文表示”。如果每个单词只能看到自己“左侧的上下文”,显然会缺少许多语境信息。因此需要训练从右到左的模型。这样,每个单词都有两个表示形式:从左到右和从右到左,然后就可以将它们串联在一起以完成下游任务了。
  • 综上,从直觉上讲,如果可以训练一个高度双向的语言模型,那将非常棒。

2.2 建模目标

可以和同是双向的ELMo对比一下:

  • ELMo:
P(w_i|w_1, w_2, ..., w_{i-1})

P(w_i|w_{i+1}, w_{i+2},...,w_n)

作为目标函数,独立训练处两个representation然后拼接。

  • BERT的目标函数:
P(w_i|w_1, ..., w_{i-1}, w_{i+1},...,w_n)

以此训练LM。

2.3 词嵌入(Embedding)

-

image
image
  • Bert的Embedding由三种Embedding求和而成。
  • Token Embeddings 是指的词(字)向量。第一个单词是CLS标志,可以用于之后的分类任务。????
  • Segment Embeddings用来区别两种句子,预训练除了LM,还需要做判断两个句子先后顺序的分类任务。
  • Position Embeddings和Transformer的Position Embeddings不一样,在Transformer中使用的是公式法在bert这里是通过训练得到的。

2.4 预训练任务(Pre-training Task)

2.4.1 Task 1: Masked LM
  • 在将单词序列输入给 BERT 之前,每个序列中有 15% 的单词被 [MASK] token 替换。然后模型尝试基于序列中其他未被 mask 的单词的上下文来预测被mask的原单词。最终的损失函数只计算被mask掉那个token。
  • 如果一直用标记[MASK]代替(在实际预测时是碰不到这个标记的)会影响模型,具体的MASK是有trick的:
  • 随机mask的时候10%的单词会被替代成其他单词,10%的单词不替换,剩下80%才被替换为[MASK]。作者没有说明什么原因,应该是基于实验效果?
  • 要注意的是Masked LM预训练阶段模型是不知道真正被mask的是哪个词,所以模型每个词都要关注。
  • 训练技巧:序列长度太大(512)会影响训练速度,所以90%的steps都用seq_len=128训练,余下的10%步数训练512长度的输入。
  • 具体实现注意:
    • i) 在encoder的输出上添加一个分类层。
    • ii) 用嵌入矩阵乘以输出向量,将其转换为词汇的维度。
    • iii) 用softmax计算词汇表中每个单词的概率。
  • BERT的损失函数只考虑了mask的预测值,忽略了没有掩蔽的字的预测。这样的话,模型要比单向模型收敛得慢,不过结果的情境意识增加了。
2.4.2 Task 2: Next Sentence Prediction
  • LM存在的问题是,缺少句子之间的关系,这对许多NLP任务很重要。为预训练句子关系模型,bert使用一个非常简单的二分类任务:将两个句子A和B链接起来,预测原始文本中句子B是否排在句子A之后。
  • 具体训练的时候,50%的输入对在原始文档中是前后关系,另外50%中是从语料库中随机组成的,并且是与第一句断开的。
  • 为了帮助模型区分开训练中的两个句子,输入在进入模型之前要按以下方式进行处理:
  • 在第一个句子的开头插入 [CLS] 标记,在每个句子的末尾插入 [SEP] 标记。
  • 将表示句子 A 或句子 B 的一个句子 embedding 添加到每个 token 上,即前文说的Segment Embeddings。
  • 给每个token添加一个位置embedding,来表示它在序列中的位置。
  • 为了预测第二个句子是否是第一个句子的后续句子,用下面几个步骤来预测:
  • 整个输入序列输入给 Transformer 模型用一个简单的分类层将[CLS]标记的输出变换为 2×1 形状的向量。
  • 用 softmax 计算 IsNextSequence 的概率
  • 在训练BERT模型时,Masked LM和 Next Sentence Prediction 是一起训练的,目标就是要最小化两种策略的组合损失函数。

2.5 微调(Fine-tunning)

  • 对于不同的下游任务,我们仅需要对BERT不同位置的输出进行处理即可,或者直接将BERT不同位置的输出直接输入到下游模型当中。具体的如下:
    • 对于情感分析等单句分类任务,可以直接输入单个句子(不需要[SEP]分隔双句),将[CLS]的输出直接输入到分类器进行分类
    • 对于句子对任务(句子关系判断任务),需要用[SEP]分隔两个句子输入到模型中,然后同样仅须将[CLS]的输出送到分类器进行分类
    • 对于问答任务,将问题与答案拼接输入到BERT模型中,然后将答案位置的输出向量进行二分类并在句子方向上进行softmax(只需预测开始和结束位置即可)
    • 对于命名实体识别任务,对每个位置的输出进行分类即可,如果将每个位置的输出作为特征输入到CRF将取得更好的效果。
    • 对于常规分类任务中,需要在 Transformer 的输出之上加一个分类层

3 优缺点

3.1 优点

  • 效果好,横扫了11项NLP任务。bert之后基本全面拥抱transformer。微调下游任务的时候,即使数据集非常小(比如小于5000个标注样本),模型性能也有不错的提升。

3.2 缺点

作者在文中主要提到的就是MLM预训练时的mask问题:

  • [MASK]标记在实际预测中不会出现,训练时用过多[MASK]影响模型表现
  • 每个batch只有15%的token被预测,所以BERT收敛得比left-to-right模型要慢(它们会预测每个token)
  • BERT的预训练任务MLM使得能够借助上下文对序列进行编码,但同时也使得其预训练过程与中的数据与微调的数据不匹配,难以适应生成式任务
  • BERT没有考虑预测[MASK]之间的相关性,是对语言模型联合概率的有偏估计
  • 由于最大输入长度的限制,适合句子和段落级别的任务,不适用于文档级别的任务(如长文本分类)

4 参考文献

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-10-20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 简介
    • 1.1 创新点
      • 1.2 成功
      • 2 模型
        • 2.1 基本思想
          • 2.2 建模目标
            • 2.3 词嵌入(Embedding)
              • 2.4 预训练任务(Pre-training Task)
                • 2.4.1 Task 1: Masked LM
                • 2.4.2 Task 2: Next Sentence Prediction
              • 2.5 微调(Fine-tunning)
              • 3 优缺点
                • 3.1 优点
                  • 3.2 缺点
                  • 4 参考文献
                  相关产品与服务
                  NLP 服务
                  NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档