前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用keras根据层名称来初始化网络

使用keras根据层名称来初始化网络

作者头像
砸漏
发布2020-11-02 15:07:33
4070
发布2020-11-02 15:07:33
举报
文章被收录于专栏:恩蓝脚本

keras根据层名称来初始化网络

代码语言:javascript
复制
def get_model(input_shape1=[75, 75, 3], input_shape2=[1], weights=None):
bn_model = 0
trainable = True
# kernel_regularizer = regularizers.l2(1e-4)
kernel_regularizer = None
activation = 'relu'
img_input = Input(shape=input_shape1)
angle_input = Input(shape=input_shape2)
# Block 1
x = Conv2D(64, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block1_conv1')(img_input)
x = Conv2D(64, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block1_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Conv2D(128, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block2_conv1')(x)
x = Conv2D(128, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv1')(x)
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv2')(x)
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv1')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv2')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv1')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv2')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
branch_1 = GlobalMaxPooling2D()(x)
# branch_1 = BatchNormalization(momentum=bn_model)(branch_1)
branch_2 = GlobalAveragePooling2D()(x)
# branch_2 = BatchNormalization(momentum=bn_model)(branch_2)
branch_3 = BatchNormalization(momentum=bn_model)(angle_input)
x = (Concatenate()([branch_1, branch_2, branch_3]))
x = Dense(1024, activation=activation, kernel_regularizer=kernel_regularizer)(x)
# x = Dropout(0.5)(x)
x = Dense(1024, activation=activation, kernel_regularizer=kernel_regularizer)(x)
x = Dropout(0.6)(x)
output = Dense(1, activation='sigmoid')(x)
model = Model([img_input, angle_input], output)
optimizer = Adam(lr=1e-5, beta_1=0.9, beta_2=0.999, epsilon=1e-8, decay=0.0)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
if weights is not None:
# 将by_name设置成True
model.load_weights(weights, by_name=True)
# layer_weights = h5py.File(weights, 'r')
# for idx in range(len(model.layers)):
#  model.set_weights()
print 'have prepared the model.'
return model

补充知识:keras.layers.Dense()方法

keras.layers.Dense()是定义网络层的基本方法,执行的操作是:output = activation(dot(input,kernel)+ bias。

其中activation是激活函数,kernel是权重矩阵,bias是偏向量。如果层输入大于2,在进行初始点积之前会将其展平。

代码如下:

代码语言:javascript
复制
class Dense(Layer):
"""Just your regular densely-connected NN layer.
`Dense` implements the operation:
`output = activation(dot(input, kernel) + bias)`
where `activation` is the element-wise activation function
passed as the `activation` argument, `kernel` is a weights matrix
created by the layer, and `bias` is a bias vector created by the layer
(only applicable if `use_bias` is `True`).
Note: if the input to the layer has a rank greater than 2, then
it is flattened prior to the initial dot product with `kernel`.
# Example
```python
# as first layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# now the model will take as input arrays of shape (*, 16)
# and output arrays of shape (*, 32)
# after the first layer, you don't need to specify
# the size of the input anymore:
model.add(Dense(32))
```
# Arguments
units: Positive integer, dimensionality of the output space.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to
the `kernel` weights matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
nD tensor with shape: `(batch_size, ..., input_dim)`.
The most common situation would be
a 2D input with shape `(batch_size, input_dim)`.
# Output shape
nD tensor with shape: `(batch_size, ..., units)`.
For instance, for a 2D input with shape `(batch_size, input_dim)`,
the output would have shape `(batch_size, units)`.
"""
@interfaces.legacy_dense_support
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(Dense, self).__init__(**kwargs)
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(min_ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape)  = 2
input_dim = input_shape[-1]
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs):
output = K.dot(inputs, self.kernel)
if self.use_bias:
output = K.bias_add(output, self.bias)
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape)  = 2
assert input_shape[-1]
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def get_config(self):
config = {
'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super(Dense, self).get_config()
return dict(list(base_config.items()) + list(config.items()))

参数说明如下:

units:正整数,输出空间的维数。

activation: 激活函数。如果未指定任何内容,则不会应用任何激活函数。即“线性”激活:a(x)= x)。

use_bias:Boolean,该层是否使用偏向量。

kernel_initializer:权重矩阵的初始化方法。

bias_initializer:偏向量的初始化方法。

kernel_regularizer:权重矩阵的正则化方法。

bias_regularizer:偏向量的正则化方法。

activity_regularizer:输出层正则化方法。

kernel_constraint:权重矩阵约束函数。

bias_constraint:偏向量约束函数。

以上这篇使用keras根据层名称来初始化网络就是小编分享给大家的全部内容了,希望能给大家一个参考。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-09-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档