前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >扫地机器人“离家出走”的真实原因找到了:差个自动驾驶算法

扫地机器人“离家出走”的真实原因找到了:差个自动驾驶算法

作者头像
量子位
发布2020-11-05 15:11:56
4150
发布2020-11-05 15:11:56
举报
文章被收录于专栏:量子位
萧箫 发自 凹非寺 量子位 报道 | 公众号 QbitAI

这家公司,竟然将自动驾驶算法用在了他们的扫地机器人上。

大材小用?

还真没有,虽然道路交通很复杂,但家里也一样。

不仅要在靠近柜脚床脚时减速,还要在“看见”障碍物(掉在地上的袜子、缠绕的数据线)时来个急刹车。

还得肩负起逗猫遛狗的责任,给上班的你直播宠物的“作案现场”。

问题来了,机器人想要避开物体(如数据线、猫狗),用目标检测算法不就行了?

但目标检测算法只能识别已知物体,无法识别、测量未知物体的距离

想让机器避障,除了检测特殊目标,还需要自动驾驶技术中的一项核心算法三维感知,即判断障碍物距离和三维尺寸(体积大小)的能力。

人眼会下意识地判断物体与自己的距离。

机器要想“学会”这种能力,同样需要先拥有“眼睛”。

自动驾驶避障核心:双目视觉算法

深度感知用到的测距方法有很多,包括红外、超声波、激光、3D结构光、3D ToF、单目视觉、双目视觉等。

那么,为什么要选择双目视觉算法?

简单来说,就是让机器像人一样,用两只眼睛看世界,产生“深度”感。不然,机器人看着你和身后的花瓶,会认为是你正顶着一个花瓶,而不会产生“深度”感。

错位图

如果只有单目(只用一只眼睛,利用时间和判定框大小变化去测量距离)的话,机器也有办法判断距离,但就与人一样,没办法判断得那么精确。

例如,左右手各举一支笔,在闭上一只眼睛后,试着将笔尖对笔尖——是不是容易对不上?因为距离感变差了,所以笔尖总是容易互相错过。

那么,激光雷达呢?

这的确是一个好东西,如果多个雷达全方位感知,机器就拥有了“神之视角”,每个角落都能看得清清楚楚。

然而,它造价太昂贵。如果在机器人身上装上可以无死角扫视房间的雷达数量,它就变成了“行走的小金库”,价格让人无法直视。

此外,如红外、超声波等算法,避障精度不如双目准确;至于3D ToF、结构光等算法,不仅成本高,需要额外配摄像头做目标检测,而且没有区分物体的能力,只能通过大小判断障碍物。(例如,薄薄的袜子可能就被误吸了)

这也是为什么,双目视觉算法在无人车与无人机领域“备受欢迎”。

而现在,双目视觉算法也被用在了扫地机器人上。

3cm以上:结合LDS,障碍物全识别

机器的“眼睛”,通俗点来说就是各种大大小小的传感器。(激光雷达、相机后面的传感器)

传感器通常的工作原理,是机器(在角α顶点处)发射红外线、超声波、激光,通过“眼睛”(下图角β的顶点)接收到后,再根据反射回来的角度、相位或时间,来判断距离(d)。

考验高中数学知识的时候到了

而双目视觉的根本原理,就像是将这个三角形变成了3D版:

它的原理就两步:①确定视差,即将两个相机拍下来的照片进行对比,找出两张照片中相同的点间像素差,②基于视差,通过已知的双目空间几何关系,计算立体空间中各点的距离。

但相比人脑的高精度计算,想要实现计算机的双目识别,并不只有解三角形这么简单。

一个重要的原因,就是在步骤②这一块,计算机本身并不知道摄像机拍的两张照片哪里是一样的

在计算机眼里,这些小黄鸭就是一堆数据

这就导致双目视觉算法的开发变得非常困难,但带来的收益也很高。

不过,双目视觉算法仍然有缺点,它受光线影响依旧很大。

所以在光线不足时,就用算法去主动“补上光线”。

以石头T7 Pro扫地机器人的算法为例,双目视觉模块分为视觉控制和深度估计两部分,一个智能补光,一个估计深度。(甚至专门做个红外拍出的相片,搞成数据集,训练补光识别效果)

但自动驾驶算法,也绝不仅仅只靠“两只眼睛”。

与人类不同,无论是自动驾驶汽车、无人机、还是扫地机器人,都可以说是“全身遍布”着眼睛。

其中就包括LDS(激光雷达)。

当双目视觉算法遇上激光雷达(能搞定所在高度的平面避障),在二者的结合之下,机器人不仅能完美避开3cm以上的障碍物,还能通过它们“找准自身定位”。

此外,激光雷达也会用在SLAM的建图和定位上。

3cm以下:目标检测算法的最强“辅助”

不过,在实际应用中,单靠双目视觉算法和激光雷达,还远远不够。

小于3×5厘米的物体,会比较麻烦,既要区分出要清扫的部分(纸屑、地毯)、又要避开一些容易缠住的障碍(数据线)。

这种情况下,双目视觉算法就成了最好的“辅助”:协助目标识别算法,将需要避开的物体检测出来,准确地区分垃圾与障碍物

目标检测模型上,T7 Pro自研的神经网络借鉴了SSD,YOLO,及CenterNet等多种新型模型,目前还在不断地迭代。

算法上,石头采用了“一分为二”的待遇:高于3厘米的物体,绕障碍物边沿避障和清扫;

小于3厘米的物体,按种类进行清扫(纸屑、地毯)或避障(宠物便便、数据线)。

数据集上,石头也“别有用心”:选出了一些特殊的物体,进行“有差别对待”。

例如,大家都有所担心的动物便便,石头T7 Pro的算法中直接加入了便便的识别(同情做数据集的一秒钟),在接触之前,远远地就避开它。

哪怕不在家,扫地机器人也不会把宠物便便拖得满地都是。

虽然算法目前已经迭代到了能够识别9种物体的“体量”(还在增加ing),但不是所有的物体都像宠物便便这样,会受到“远远避开”的待遇。

9类常见障碍物:底座类(吧台椅、风扇、手持底座、平底座、灯底座)、体重秤、线团、插线板、鞋子、粑粑、织物(如袜子)、易卡家具( 如U型椅)、簸箕

例如鞋子、风扇这种相对较为安全的物体,离得近一点再避障也没什么问题(推开一点不重要,扫干净就行)。

以及,这部分算法还有个小彩蛋。

在你上班的时候,这个扫地机器人就能化身小管家,“监督”宠物:是不是又把食盆打翻了?

不过,视频只有直播,没有云存储,也就是说,其他人甚至没办法窃取你家的数据,所以,不用担心扫地机器人会“变身间谍”。

继续“拆解”后的发现

从深度感知部分来看,扫地机器人深度感知的原理,与无人驾驶算法有着相似之处:

如下图,算法包含三大部分,第一部分是传感器数据的获取,第二部分是信息的提取,第三部分是独特导航算法的融合(后融合)。

但这并不意味着,扫地机器人的算法与无人驾驶汽车的算法一样。

在实际应用上,扫地机器人需要“近距离避障”(晚点刹车,扫得更干净),自动驾驶汽车则相反,需要以“安全”为主(尽早刹车)。

所以,虽然二者的避障核心都是自动驾驶中的双目视觉算法,但数据处理方式不同。

从根本上来说,它们都是智能机器人,为了让生活变得更方便而存在。

“智能,让人们更聚焦于生活”

石头科技CTO、本硕毕业于浙大的吴震,在接受量子位采访时表示,基于用户场景持续迭代,扫地机器人才能更好地适应千家万户的多样性。

石头科技CTO吴震

例如,内测的时候,先对身边的人“下手”:

在我们第一代产品内测时,我们发现有一位同事家里,一件老家具很容易卡住机器人。 后来我们就给这位同事买了一件相似的新家具,然后把这件老家具搬到实验室,作为我们标准测试项目。

而扫地机器人被发明出来的初衷,本质上与无人驾驶汽车一样,目的是将人类从劳动(驾车、琐碎的家务等)中解放出来,聚焦于生活。

吴震相信,伴随着计算机视觉的发展,智能机器人的视觉算法也会变得越来越完善。

“扫地机器人,在我们看来是机器人技术在家庭环境下的第一个应用,但不会是最后一个。它不是终点,而是开始、是未来。”

期待这些未来的智能机器人,能(让我们变得更懒)更加解放我们的双手。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 自动驾驶避障核心:双目视觉算法
    • 3cm以上:结合LDS,障碍物全识别
      • 3cm以下:目标检测算法的最强“辅助”
      • 继续“拆解”后的发现
      • “智能,让人们更聚焦于生活”
      相关产品与服务
      图像识别
      腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档