前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Open3d学习计划—高级篇 4(多视角点云配准)

Open3d学习计划—高级篇 4(多视角点云配准)

作者头像
点云PCL博主
发布2020-11-19 11:37:44
4.5K0
发布2020-11-19 11:37:44
举报
文章被收录于专栏:点云PCL

Open3D是一个开源库,支持快速开发和处理3D数据。Open3D在c++和Python中公开了一组精心选择的数据结构和算法。后端是高度优化的,并且是为并行化而设置的。

本系列学习计划有Blue同学作为发起人,主要以Open3D官方网站的教程为主进行翻译与实践的学习计划。点云PCL公众号作为免费的3D视觉,点云交流社区,期待有使用Open3D或者感兴趣的小伙伴能够加入我们的翻译计划,贡献免费交流社区,为使用Open3D提供中文的使用教程。

多视角配准是在全局空间中对齐多个几何形状的过程。比较有代表性的是,输入是一组几何形状Pi(可以是点云或者RGBD图像)。输出是一组刚性变换Ti,变换后的点云TiPi可以在全局空间中对齐。 Open3d通过姿态图估计提供了多视角配准的接口。具体的技术细节请参考[Choi2015].

输入

教程代码的第一部分是从三个文件中读取三个点云数据,这三个点云将被降采样和可视化,可以看出他们三个是不对齐的。

代码语言:javascript
复制
def load_point_clouds(voxel_size=0.0):
    pcds = []
    for i in range(3):
        pcd = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_%d.pcd" % i)
        pcd_down = pcd.voxel_down_sample(voxel_size=voxel_size)
        pcds.append(pcd_down)
    return pcds
代码语言:javascript
复制
voxel_size = 0.02
pcds_down = load_point_clouds(voxel_size)
o3d.visualization.draw_geometries(pcds_down)

姿态图

姿态图有两个关键的基础:节点和边。节点是与姿态矩阵i关联的一组几何体Pi,通过该矩阵能够将Pi转换到全局空间。集和Ti是一组待优化的未知的变量。

PoseGraph.nodes是PoseGraphNode的列表。我们设P0的空间是全局空间。因此T0是单位矩阵。其他的姿态矩阵通过累加相邻节点之间的变换来初始化。相邻节点通常都有着大规模的重叠并且能够通过Point-to-plane ICP来配准。

姿态图的边连接着两个重叠的节点(几何形状)。每个边都包含着能够将源几何Pi 和目标几何Pj对齐的变换矩阵Ti,j。本教程使用Point-to-plane ICP来估计变换矩阵。在更复杂的情况中,成对的配准问题一般是通过全局配准来解决的。

[Choi2015] 观察到,成对的配准容易出错。甚至错误的匹配会大于正确的匹配,因此,他们将姿态图的边分为两类。Odometry edges连接着邻域节点,使用局部配准的方式比如ICP就可以对齐他们。Loop closure edges连接着非邻域的节点。该对齐是通过不太可靠的全局配准找到的。在Open3d中,这两类边缘通过PoseGraphEdge初始化程序中的uncertain参数来确定。

除了旋转矩阵Ti以外,用户也可以去设置每一条边的信息矩阵Ai。如果是通过 get_information_matrix_from_point_clouds设置的信息矩阵Ai,那么姿态图的边的损失将以 line process weight 近似于两组节点对应点集的RMSE。有关详细细节请参考[Choi2015] 和 the Redwood registration benchmark。

下面的脚本创造了具有三个节点和三个边的姿态图。这些边里,两个是odometry edges(uncertain = False),一个是loop closure edge(uncertain = True)。

代码语言:javascript
复制
def pairwise_registration(source, target):
    print("Apply point-to-plane ICP")
    icp_coarse = o3d.registration.registration_icp(
        source, target, max_correspondence_distance_coarse, np.identity(4),
        o3d.registration.TransformationEstimationPointToPlane())
    icp_fine = o3d.registration.registration_icp(
        source, target, max_correspondence_distance_fine,
        icp_coarse.transformation,
        o3d.registration.TransformationEstimationPointToPlane())
    transformation_icp = icp_fine.transformation
    information_icp = o3d.registration.get_information_matrix_from_point_clouds(
        source, target, max_correspondence_distance_fine,
        icp_fine.transformation)
    return transformation_icp, information_icp

def full_registration(pcds, max_correspondence_distance_coarse,
                      max_correspondence_distance_fine):
    pose_graph = o3d.registration.PoseGraph()
    odometry = np.identity(4)
    pose_graph.nodes.append(o3d.registration.PoseGraphNode(odometry))
    n_pcds = len(pcds)
    for source_id in range(n_pcds):
        for target_id in range(source_id + 1, n_pcds):
            transformation_icp, information_icp = pairwise_registration(
                pcds[source_id], pcds[target_id])
            print("Build o3d.registration.PoseGraph")
            if target_id == source_id + 1:  # odometry case
                odometry = np.dot(transformation_icp, odometry)
                pose_graph.nodes.append(
                    o3d.registration.PoseGraphNode(np.linalg.inv(odometry)))
                pose_graph.edges.append(
                    o3d.registration.PoseGraphEdge(source_id,
                                                   target_id,
                                                   transformation_icp,
                                                   information_icp,
                                                   uncertain=False))
            else:  # loop closure case
                pose_graph.edges.append(
                    o3d.registration.PoseGraphEdge(source_id,
                                                   target_id,
                                                   transformation_icp,
                                                   information_icp,
                                                   uncertain=True))
    return pose_graph

print("Full registration ...")
max_correspondence_distance_coarse = voxel_size * 15
max_correspondence_distance_fine = voxel_size * 1.5
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
    pose_graph = full_registration(pcds_down,
                                   max_correspondence_distance_coarse,
                                   max_correspondence_distance_fine)

Open3d使用函数global_optimization进行姿态图估计,可以选择两种类型的优化算法,分别是GlobalOptimizationGaussNewto

和GlobalOptimizationLevenbergMarquardt。比较推荐后一种的原因是因为它具有比较好的收敛性。GlobalOptimizationConvergenceCriteria类可以用来设置最大迭代次数和别的优化参数。

GlobalOptimizationOption定于了两个参数。max_correspondence_distance定义了对应阈值。edge_prune_threshold是修剪异常边缘的阈值。reference_node是被视为全局空间的节点ID。

代码语言:javascript
复制
print("Optimizing PoseGraph ...")
option = o3d.registration.GlobalOptimizationOption(
    max_correspondence_distance=max_correspondence_distance_fine,
    edge_prune_threshold=0.25,
    reference_node=0)
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
    o3d.registration.global_optimization(
        pose_graph, o3d.registration.GlobalOptimizationLevenbergMarquardt(),
        o3d.registration.GlobalOptimizationConvergenceCriteria(), option)

全局优化在姿态图上执行两次。第一遍将考虑所有边缘的情况优化原始姿态图的姿态,并尽量区分不确定边缘之间的错误对齐。这些错误对齐将会产生小的 line process weights,他们将会在第一遍被剔除。第二遍将会在没有这些边的情况下运行,产生更紧密地全局对齐效果。在这个例子中,所有的边都将被考虑为真实的匹配,所以第二遍将会立即终止。

可视化操作

使用```draw_geometries``函数可视化变换点云。

代码语言:javascript
复制
print("Transform points and display")
for point_id in range(len(pcds_down)):
    print(pose_graph.nodes[point_id].pose)
    pcds_down[point_id].transform(pose_graph.nodes[point_id].pose)
o3d.visualization.draw_geometries(pcds_down)

Transform points and display [[ 1.00000000e+00 -2.50509994e-19 0.00000000e+00 0.00000000e+00] [-3.35636805e-20 1.00000000e+00 1.08420217e-19 -8.67361738e-19] [-1.08420217e-19 -1.08420217e-19 1.00000000e+00 0.00000000e+00] [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]] [[ 0.8401689 -0.14645453 0.52217554 0.34785474] [ 0.00617659 0.96536804 0.2608187 -0.39427149] [-0.54228965 -0.2159065 0.81197679 1.7300472 ] [ 0. 0. 0. 1. ]] [[ 0.96271237 -0.07178412 0.2608293 0.3765243 ] [-0.00196124 0.96227508 0.27207136 -0.48956598] [-0.27051994 -0.26243801 0.92625334 1.29770817] [ 0. 0. 0. 1. ]]

得到合并的点云

PointCloud是可以很方便的使用+来合并两组点云成为一个整体。合并之后,将会使用voxel_down_sample进行重新采样。建议在合并之后对点云进行后处理,因为这样可以减少重复的点后者较为密集的点。

代码语言:javascript
复制
pcds = load_point_clouds(voxel_size)
pcd_combined = o3d.geometry.PointCloud()
for point_id in range(len(pcds)):
    pcds[point_id].transform(pose_graph.nodes[point_id].pose)
    pcd_combined += pcds[point_id]
pcd_combined_down = pcd_combined.voxel_down_sample(voxel_size=voxel_size)
o3d.io.write_point_cloud("multiway_registration.pcd", pcd_combined_down)
o3d.visualization.draw_geometries([pcd_combined_down])

尽管这个教程展示的点云的多视角配准,但是相同的处理步骤可以应用于RGBD图像,请参看 Make fragments 示例。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 点云PCL 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档