前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Nebula Exchange 工具 Hive 数据导入的踩坑之旅

Nebula Exchange 工具 Hive 数据导入的踩坑之旅

原创
作者头像
NebulaGraph
修改2021-01-11 17:42:14
9350
修改2021-01-11 17:42:14
举报
文章被收录于专栏:NebulaGraph 技术文章
Nebula Exchange 工具 Hive 数据导入的踩坑之旅
Nebula Exchange 工具 Hive 数据导入的踩坑之旅

摘要:本文由社区用户 xrfinbj 贡献,主要介绍 Exchange 工具从 Hive 数仓导入数据到 Nebula Graph 的流程及相关的注意事项。

1 背景

公司内部有使用图数据库的场景,内部通过技术选型确定了 Nebula Graph 图数据库,还需要验证 Nebula Graph 数据库在实际业务场景下的查询性能。所以急迫的需要导入数据到 Nebula Graph 并验证。在这个过程中发现通过 Exchange 工具从 hive 数仓导入数据到 Nebula Graph 文档不是很全,所以把这个流程中踩到的坑记录下来,回馈社区,避免后人走弯路。

本文主要基于我之前发在论坛的 2 篇帖子:

2 环境信息

  • Nebula Graph 版本:nebula:nightly
  • 部署方式(分布式 / 单机 / Docker / DBaaS):Mac 电脑 Docker 部署
  • 硬件信息
    • 磁盘(SSD / HDD):Mac 电脑 SSD
    • CPU、内存信息:16 G
  • 数仓环境(Mac 电脑搭建的本地数仓):
    • Hive 3.1.2
    • Hadoop 3.2.1
  • Exchange 工具:https://github.com/vesoft-inc/nebula-java/tree/v1.0/tools/exchange

编译后生成 jar 包

  • Spark spark-2.4.7-bin-hadoop2.7 (conf 目录下配置 Hadoop 3.2.1 对应的 core-site.xml,hdfs-site.xml,hive-site.xml 设置 spark-env.sh) Scala code runner version 2.13.3 -- Copyright 2002-2020, LAMP/EPFL and Lightbend, Inc.

3 配置

1 Nebula Graph DDL

代码语言:txt
复制
CREATE SPACE test_hive(partition_num=10, replica_factor=1); --创建图空间,本示例中假设只需要一个副本
USE test_hive; --选择图空间 test
CREATE TAG tagA(idInt int, idString string, tboolean bool, tdouble double); -- 创建标签 tagA
CREATE TAG tagB(idInt int, idString string, tboolean bool, tdouble double); -- 创建标签 tagB
CREATE EDGE edgeAB(idInt int, idString string, tboolean bool, tdouble double); -- 创建边类型 edgeAB

2 Hive DDL

代码语言:txt
复制
CREATE TABLE `tagA`(                               
   `id` bigint,                                     
   `idInt` int,                            
   `idString` string,                                 
   `tboolean` boolean,                                 
   `tdouble` double) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001' LINES TERMINATED BY '\n';
insert into tagA select 1,1,'str1',true,11.11;
insert into tagA select 2,2,"str2",false,22.22;

CREATE TABLE `tagB`(                               
   `id` bigint,                                     
   `idInt` int,                            
   `idString` string,                                 
   `tboolean` boolean,                                 
   `tdouble` double) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001' LINES TERMINATED BY '\n';
insert into tagB select 3,3,"str 3",true,33.33;
insert into tagB select 4,4,"str 4",false,44.44;

CREATE TABLE `edgeAB`(                               
   `id_source` bigint,                                     
   `id_dst` bigint,         
   `idInt` int,                            
   `idString` string,                                 
   `tboolean` boolean,                                 
   `tdouble` double) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001' LINES TERMINATED BY '\n';
insert into edgeAB select 1,3,5,"edge 1",true,55.55;
insert into edgeAB select 2,4,6,"edge 2",false,66.66;

3 我的最新 nebula_application.conf 文件

注意看exec、fields、nebula.fields、vertex、source、target字段映射

代码语言:txt
复制
{
  # Spark relation config
  spark: {
    app: {
      name: Spark Writer
    }

    driver: {
      cores: 1
      maxResultSize: 1G
    }

    cores {
      max: 4
    }
  }

  # Nebula Graph relation config
  nebula: {
    address:{
      graph: ["192.168.1.110:3699"]
      meta: ["192.168.1.110:45500"]
    }
    user: user
    pswd: password
    space: test_hive

    connection {
      timeout: 3000
      retry: 3
    }

    execution {
      retry: 3
    }

    error: {
      max: 32
      output: /tmp/error
    }
    rate: {
      limit: 1024
      timeout: 1000
    }
  }

  # Processing tags
  tags: [
    # Loading from Hive
    {
      name: tagA
      type: {
        source: hive
        sink: client
      }
      exec: "select id,idint,idstring,tboolean,tdouble from nebula.taga"
      fields: [id,idstring,tboolean,tdouble]
      nebula.fields: [idInt,idString,tboolean,tdouble]
      vertex: id
      batch: 256
      partition: 10
    }
    {
      name: tagB
      type: {
        source: hive
        sink: client
      }
      exec: "select id,idint,idstring,tboolean,tdouble from nebula.tagb"
      fields: [id,idstring,tboolean,tdouble]
      nebula.fields: [idInt,idString,tboolean,tdouble]
      vertex: id
      batch: 256
      partition: 10
    }
  ]

  # Processing edges
  edges: [
    # Loading from Hive
    {
      name: edgeAB
      type: {
        source: hive
        sink: client
      }
      exec: "select id_source,id_dst,idint,idstring,tboolean,tdouble from nebula.edgeab"
      fields: [id_source,idstring,tboolean,tdouble]
      nebula.fields: [idInt,idString,tboolean,tdouble]
      source: id_source
      target: id_dst
      batch: 256
      partition: 10
    }
  ]
}

4 执行导入

4.1 确保 nebula 服务启动

4.2 确保 Hive 表和数据就绪

4.3 执行 spark-sql cli 查看 Hive 表以及数据是否正常以确保 Spark 环境没问题

Nebula Exchange 工具 Hive 数据导入的踩坑之旅
Nebula Exchange 工具 Hive 数据导入的踩坑之旅

4.4 一切配置工作就绪后,执行 Spark 命令:

代码语言:txt
复制
spark-submit --class com.vesoft.nebula.tools.importer.Exchange --master “local[4]” /xxx/exchange-1.0.1.jar -c /xxx/nebula_application.conf -h

4.5 导入成功后 可以借助 db_dump 工具查看导入数据量 验证正确性

代码语言:txt
复制
./db_dump --mode=stat --space=xxx --db_path=/home/xxx/data/storage0/nebula   --limit 20000000

5 踩坑以及说明

  • 第一个坑就是 spark-submit 命令没有加 -h 参数
  • Nebula Graph 中 tagName 是大小写敏感的,tags 的配置中 name 配置的应该是 Nebula Graph 的 tag 名
  • Hive的 int 和 Nebula Graph 的 int 不一致,Hive 里面的 bigint 对应 Nebula Graph 的 int

其他说明:

  • 由于 Nebula Graph 底层存储是 kv,重复插入其实是覆盖,update 操作用 insert 替代性能会高些
  • 文档里面不全的地方可能暂时只有一边看源码解决,一边去论坛问(开发同学也不容易又要紧张的开发又要回答用户的疑问)
  • 导入数据、Compact 以及操作建议:https://docs.nebula-graph.com.cn/manual-CN/3.build-develop-and-administration/5.storage-service-administration/compact/
  • 我已经验证如下两个场景:
    • 用 Spark 2.4 从 Hive 2(Hadoop 2)中导入数据到 Nebula Graph
    • 用 Spark 2.4 从 Hive3(Hadoop 3)中导入数据到 Nebula Graph

说明:Exchange 目前还不支持 Spark 3,编译后运行报错,所以没法验证 Spark 3 环境

还有一些疑问

  • nebula_application.conf 文件的参数 batch 和 rate.limit 应该如何设置?参数如何抉择?
  • Exchange 工具 Hive 数据导入原理(Spark 这块我也是最近现学现用)

6 Exchange 源码 Debug

Spark Debug 部分参考博客:https://dzone.com/articles/how-to-attach-a-debugger-to-apache-spark

通过 Exchange 源码的学习和 Debug 能加深对 Exchange 原理的理解,同时也能发现一些文档描述不清晰的地方,比如 导入 SST 文件Download and Ingest 只有结合源码看才能发现文档描述不清晰逻辑不严谨的问题。

通过源码 Debug 也能发现一些简单的参数配置问题。

进入正题:

步骤一:

代码语言:txt
复制
export SPARK_SUBMIT_OPTS=-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=4000

步骤二:

代码语言:txt
复制
spark-submit --class com.vesoft.nebula.tools.importer.Exchange --master “local” /xxx/exchange-1.1.0.jar -c /xxx/nebula_application.conf -h
Listening for transport dt_socket at address: 4000

步骤三:IDEA 配置

IDEA 配置
IDEA 配置

步骤四:在 IDEA 里面点击 Debug

IDEA Debug
IDEA Debug

7 建议与感谢

感谢 vesoft 提供了宇宙性能最强的 Nebula Graph 图数据库,能解决业务中很多实际问题,中途这点痛不算什么(看之前的分享,360 数科他们那个痛才是真痛)。中途遇到的问题都有幸得到社区及时的反馈解答,再次感谢

很期待 Exchange 支持 Nebula Graph 2.0

参考资料

喜欢这篇文章?来来来,给我们的 GitHub 点个 star 表鼓励啦~~ 🙇‍♂️🙇‍♀️ 手动跪谢

交流图数据库技术?交个朋友,Nebula Graph 官方小助手微信:NebulaGraphbot 拉你进交流群~~

推荐阅读

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 背景
  • 2 环境信息
    • 3 配置
      • 1 Nebula Graph DDL
        • 2 Hive DDL
          • 3 我的最新 nebula_application.conf 文件
          • 4 执行导入
            • 4.1 确保 nebula 服务启动
              • 4.2 确保 Hive 表和数据就绪
                • 4.3 执行 spark-sql cli 查看 Hive 表以及数据是否正常以确保 Spark 环境没问题
                  • 4.4 一切配置工作就绪后,执行 Spark 命令:
                    • 4.5 导入成功后 可以借助 db_dump 工具查看导入数据量 验证正确性
                    • 5 踩坑以及说明
                      • 其他说明:
                        • 还有一些疑问
                        • 6 Exchange 源码 Debug
                        • 7 建议与感谢
                        • 参考资料
                        • 推荐阅读
                        相关产品与服务
                        图数据库 KonisGraph
                        图数据库 KonisGraph(TencentDB for KonisGraph)是一种云端图数据库服务,基于腾讯在海量图数据上的实践经验,提供一站式海量图数据存储、管理、实时查询、计算、可视化分析能力;KonisGraph 支持属性图模型和 TinkerPop Gremlin 查询语言,能够帮助用户快速完成对图数据的建模、查询和可视化分析。
                        领券
                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档