我们之前看见了在 Elasticsearch 里的 ingest node 里,我们可以通过以下 processor 的处理帮我们处理我们的一些数据。它们的功能是非常具体而明确的。那么在 Elasticsearch 里,有没有一种更加灵活的方式可供我们来进行编程处理呢?如果有,它使用的语言是什么呢?
在 Elasticsearch 中,它使用了一个叫做 Painless 的语言。它是专门为 Elasticsearch 而建立的。Painless 是一种简单,安全的脚本语言,专为与 Elasticsearch 一起使用而设计。 它是 Elasticsearch 的默认脚本语言,可以安全地用于 inline 和 stored 脚本。它具有像 Groovy 那样的语法。自 Elasticsearch 6.0 以后的版本不再支持 Groovy,Javascript 及 Python 语言。
使用脚本,你可以在 Elasticsearch 中评估自定义表达式。 例如,您可以使用脚本来返回 “script fields” 作为搜索请求的一部分,或者评估查询的自定义分数。
脚本的语法为:
"script": {
"lang": "...",
"source" | "id": "...",
"params": { ... }
}
首先我们来创建一个简单的文档:
PUT twitter/_doc/1
{
"user": "双榆树-张三",
"message": "今儿天气不错啊,出去转转去",
"uid": 2,
"age": 20,
"city": "北京",
"province": "北京",
"country": "中国",
"address": "中国北京市海淀区",
"location": {
"lat": "39.970718",
"lon": "116.325747"
}
}
在这个文档里,我们现在想把 age 修改为 30,那么一种办法就是把所有的文档内容都读出来,让修改其中的 age 想为30,再重新用同样的方法写进去。首先这里需要有几个动作:先读出数据,然后修改,再次写入数据。显然这样比较麻烦。在这里我们可以直接使用 Painless 语言直接进行修改:
POST twitter/_update/1
{
"script": {
"source": "ctx._source.age = 30"
}
}
这里的 source 表明是我们的 Painless 代码。这里我们只写了很少的代码在 DSL 之中。这种代码称之为 inline。在这里我们直接通过 ctx._source.age 来访问 _souce 里的 age。这样我们通过编程的办法直接对年龄进行了修改。运行的结果是:
{
"_index":"twitter",
"_type":"_doc",
"_id":"1",
"_version":16,
"_seq_no":20,
"_primary_term":1,
"found":true,
"_source":{
"user":"双榆树-张三",
"message":"今儿天气不错啊,出去转转去",
"uid":2,
"age":30,
"city":"北京",
"province":"北京",
"country":"中国",
"address":"中国北京市海淀区",
"location":{
"lat":"39.970718",
"lon":"116.325747"
}
}
}
显然这个 age 已经改变为 30。上面的方法固然好,但是每次执行 scripts 都是需要重新进行编译的。编译好的 script 可以缓存并供以后使用。上面的 script 如果是改变年龄的话,需要重新进行编译。一种更好的方法是改为这样的:
POST twitter/_update/1
{
"script": {
"source": "ctx._source.age = params.value",
"params": {
"value": 34
}
}
}
这样,我们的 script 的 source 是不用改变的,只需要编译一次。下次调用的时候,只需要修改 params 里的参数即可。
在 Elasticsearch 里,以下两个被视为两个不同的脚本,需要分别进行编译,所以最好的办法是使用 params 来传入参数。
"script": { "source": "ctx._source.num_of_views += 2"}
"script": { "source": "ctx._source.num_of_views += 3"}
除了上面的 update 之外,我们也可以使用 script query 来对我们的文档来继续搜索:
GET twitter/_search
{
"query": {
"script": {
"script": {
"source": "doc['city'].contains(params.name)",
"lang": "painless",
"params": {
"name": "北京"
}
}
}
}
}
在上面的脚本中,查询在 city 字段中含有 “北京” 的所有文档。
在这种情况下,scripts 可以被存放于一个集群的状态中。它之后可以通过 ID 进行调用:
PUT _scripts/add_age
{
"script": {
"lang": "painless",
"source": "ctx._source.age += params.value"
}
}
在这里,我们定义了一个叫做 add_age 的 script。它的作用就是帮我们把 source 里的 age 加上一个数值。我们可以在之后调用它:
POST twitter/_update/1
{
"script": {
"id": "add_age",
"params": {
"value": 2
}
}
}
通过上面的执行,我们可以看到,age 将会被加上 2。
Painless 中用于访问字段值的语法取决于上下文。在 Elasticsearch 中,有许多不同的 Plainless上下文。就像那个链接显示的那样,Plainless 上下文包括:ingest processor, update, update by query, sort,filter等等。
Context | 访问字段 |
---|---|
Ingest node: 访问字段使用ctx | ctx.field_name |
Updates: 使用_source 字段 | ctx._source.field_name |
这里的 updates 包括 _update,_reindex 以及 update_by_query。这里,我们对于 context(上下文的理解)非常重要。它的意思是针对不同的 API,在使用中 ctx 所包含的字段是不一样的。在下面的例子中,我们针对一些情况来做具体的分析。
首先我们创建一个叫做 add_field_c 的 pipeline。
PUT _ingest/pipeline/add_field_c
{
"processors": [
{
"script": {
"lang": "painless",
"source": "ctx.field_c = (ctx.field_a + ctx.field_b) * params.value",
"params": {
"value": 2
}
}
}
]
}
这个 pipepline 的作用是创建一个新的field:field_c。它的结果是 field_a 及 field_b 的和,并乘以 2。那么我们创建一个如下的文档:
PUT test_script/_doc/1?pipeline=add_field_c
{
"field_a": 10,
"field_b": 20
}
在这里,我们使用了pipleline add_field_c。执行后的结果是:
POST test_script/_search
{
"query": {
"match_all": {}
}
}
结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "test_script",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"field_c" : 60,
"field_a" : 10,
"field_b" : 20
}
}
]
}
}
显然,我们可以看到 field_c 被成功创建了。
在 ingest 过程中,可以使用脚本处理器来处理 metadata,如 _index 和 _type。 下面是一个Ingest Pipeline 的示例,无论原始索引请求中提供了什么,它都会将索引和类型重命名为 my_index:
PUT _ingest/pipeline/my_index
{
"description": "use index:my_index and type:_doc",
"processors": [
{
"script": {
"source": "ctx._index = 'my_index'; ctx._type = '_doc';"
}
}
]
}
使用上面的 pipeline,我们可以尝试 index 一个文档到 any_index:
PUT any_index/_doc/1?pipeline=my_index
{
"message": "text"
}
结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"message" : "text"
}
}
]
}
}
也就是说真正的文档时存到 my_index 之中,而不是 any_index。
PUT _ingest/pipeline/blogs_pipeline
{
"processors": [
{
"script": {
"source": """ if (ctx.category == "") { ctx.category = "None"} """
}
}
]
}
我们上面定义了一个 pipeline,它可以帮我们检查如果 category 字段是否为空,如果是,就修改为 “None”。还是以之前的那个 test_script 索引为例:
PUT test_script/_doc/2?pipeline=blogs_pipeline
{
"field_a": 5,
"field_b": 10,
"category": ""
}
GET test_script/_doc/2
结果:
{
"_index" : "test_script",
"_type" : "_doc",
"_id" : "2",
"_version" : 1,
"_seq_no" : 1,
"_primary_term" : 1,
"found" : true,
"_source" : {
"field_a" : 5,
"field_b" : 10,
"category" : "None"
}
}
显然,它把 category 为 “” 的字段变为 “None” 了。
POST _reindex
{
"source": {
"index": "blogs"
},
"dest": {
"index": "blogs_fixed"
},
"script": {
"source": """ if (ctx._source.category == "") { ctx._source.category = "None" }"""
}
}
上面的这个例子在 reindex 时,如果 category 为空时,写入“None”。我们可以从上面的两个例子中看出来,针对 pipeline,我们可以直接对 cxt.field 进行操作,而针对 update 来说,我们可以对 cxt._source 下的字段进行操作。这也是之前提到的上下文的区别。
PUT test/_doc/1
{
"counter": 1,
"tags": [
"red"
]
}
您可以使用和 update 脚本将 tag 添加到 tags 列表(这只是一个列表,因此即使存在标记也会添加):
POST test/_update/1
{
"script": {
"source": "ctx._source.tags.add(params.tag)",
"lang": "painless",
"params": {
"tag": "blue"
}
}
}
GET test/_doc/1
结果:
{
"_index" : "test",
"_type" : "_doc",
"_id" : "1",
"_version" : 2,
"_seq_no" : 1,
"_primary_term" : 1,
"found" : true,
"_source" : {
"counter" : 1,
"tags" : [
"red",
"blue"
]
}
}
显示 “blue”,已经被成功加入到 tags 列表之中了。
您还可以从 tags 列表中删除 tag。 删除 tag 的 Painless 函数采用要删除的元素的数组索引。 为避免可能的运行时错误,首先需要确保 tag 存在。 如果列表包含tag的重复项,则此脚本只删除一个匹配项。
POST test/_update/1
{
"script": {
"source": "if (ctx._source.tags.contains(params.tag)) { ctx._source.tags.remove(ctx._source.tags.indexOf(params.tag)) }",
"lang": "painless",
"params": {
"tag": "blue"
}
}
}
GET test/_doc/1
结果:
{
"_index" : "test",
"_type" : "_doc",
"_id" : "1",
"_version" : 3,
"_seq_no" : 2,
"_primary_term" : 1,
"found" : true,
"_source" : {
"counter" : 1,
"tags" : [
"red"
]
}
}
“blue” 显然已经被删除了。
为了说明 Painless 的工作原理,让我们将一些曲棍球统计数据加载到 Elasticsearch 索引中:
PUT hockey/_bulk?refresh
{"index":{"_id":1}}
{"first":"johnny","last":"gaudreau","goals":[9,27,1],"assists":[17,46,0],"gp":[26,82,1],"born":"1993/08/13"}
{"index":{"_id":2}}
{"first":"sean","last":"monohan","goals":[7,54,26],"assists":[11,26,13],"gp":[26,82,82],"born":"1994/10/12"}
{"index":{"_id":3}}
{"first":"jiri","last":"hudler","goals":[5,34,36],"assists":[11,62,42],"gp":[24,80,79],"born":"1984/01/04"}
{"index":{"_id":4}}
{"first":"micheal","last":"frolik","goals":[4,6,15],"assists":[8,23,15],"gp":[26,82,82],"born":"1988/02/17"}
{"index":{"_id":5}}
{"first":"sam","last":"bennett","goals":[5,0,0],"assists":[8,1,0],"gp":[26,1,0],"born":"1996/06/20"}
{"index":{"_id":6}}
{"first":"dennis","last":"wideman","goals":[0,26,15],"assists":[11,30,24],"gp":[26,81,82],"born":"1983/03/20"}
{"index":{"_id":7}}
{"first":"david","last":"jones","goals":[7,19,5],"assists":[3,17,4],"gp":[26,45,34],"born":"1984/08/10"}
{"index":{"_id":8}}
{"first":"tj","last":"brodie","goals":[2,14,7],"assists":[8,42,30],"gp":[26,82,82],"born":"1990/06/07"}
{"index":{"_id":39}}
{"first":"mark","last":"giordano","goals":[6,30,15],"assists":[3,30,24],"gp":[26,60,63],"born":"1983/10/03"}
{"index":{"_id":10}}
{"first":"mikael","last":"backlund","goals":[3,15,13],"assists":[6,24,18],"gp":[26,82,82],"born":"1989/03/17"}
{"index":{"_id":11}}
{"first":"joe","last":"colborne","goals":[3,18,13],"assists":[6,20,24],"gp":[26,67,82],"born":"1990/01/30"}
文档里的值可以通过一个叫做 doc 的 Map 值来访问。例如,以下脚本计算玩家的总进球数。 此示例使用类型 int 和 fo r循环。
GET hockey/_search
{
"query": {
"function_score": {
"script_score": {
"script": {
"lang": "painless",
"source": " int total = 0; for (int i = 0; i < doc['goals'].length; ++i) { total += doc['goals'][i]; } return total; "
}
}
}
}
}
这里我们通过 script 来计算每个文档的 _score。通过 script 把每个运动员的 goal 都加起来,并形成最终的 _score。这里我们通过doc['goals'] 这个 Map 类型来访问我们的字段值。显示的结果为:
{
"took" : 12,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10,
"relation" : "eq"
},
"max_score" : 87.0,
"hits" : [
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "2",
"_score" : 87.0,
"_source" : {
"first" : "sean",
"last" : "monohan",
"goals" : [
7,
54,
26
],
"assists" : [
11,
26,
13
],
"gp" : [
26,
82,
82
],
"born" : "1994/10/12"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "3",
"_score" : 75.0,
"_source" : {
"first" : "jiri",
"last" : "hudler",
"goals" : [
5,
34,
36
],
"assists" : [
11,
62,
42
],
"gp" : [
24,
80,
79
],
"born" : "1984/01/04"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "39",
"_score" : 51.0,
"_source" : {
"first" : "mark",
"last" : "giordano",
"goals" : [
6,
30,
15
],
"assists" : [
3,
30,
24
],
"gp" : [
26,
60,
63
],
"born" : "1983/10/03"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "6",
"_score" : 41.0,
"_source" : {
"first" : "dennis",
"last" : "wideman",
"goals" : [
0,
26,
15
],
"assists" : [
11,
30,
24
],
"gp" : [
26,
81,
82
],
"born" : "1983/03/20"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "1",
"_score" : 37.0,
"_source" : {
"first" : "johnny",
"last" : "gaudreau",
"goals" : [
9,
27,
1
],
"assists" : [
17,
46,
0
],
"gp" : [
26,
82,
1
],
"born" : "1993/08/13"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "7",
"_score" : 31.0,
"_source" : {
"first" : "david",
"last" : "jones",
"goals" : [
7,
19,
5
],
"assists" : [
3,
17,
4
],
"gp" : [
26,
45,
34
],
"born" : "1984/08/10"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "10",
"_score" : 31.0,
"_source" : {
"first" : "mikael",
"last" : "backlund",
"goals" : [
3,
15,
13
],
"assists" : [
6,
24,
18
],
"gp" : [
26,
82,
82
],
"born" : "1989/03/17"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "4",
"_score" : 25.0,
"_source" : {
"first" : "micheal",
"last" : "frolik",
"goals" : [
4,
6,
15
],
"assists" : [
8,
23,
15
],
"gp" : [
26,
82,
82
],
"born" : "1988/02/17"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "8",
"_score" : 23.0,
"_source" : {
"first" : "tj",
"last" : "brodie",
"goals" : [
2,
14,
7
],
"assists" : [
8,
42,
30
],
"gp" : [
26,
82,
82
],
"born" : "1990/06/07"
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "5",
"_score" : 5.0,
"_source" : {
"first" : "sam",
"last" : "bennett",
"goals" : [
5,
0,
0
],
"assists" : [
8,
1,
0
],
"gp" : [
26,
1,
0
],
"born" : "1996/06/20"
}
}
]
}
}
或者,您可以使用 script_fields 而不是 function_score 执行相同的操作:
GET hockey/_search
{
"query": {
"match_all": {}
},
"script_fields": {
"total_goals": {
"script": {
"lang": "painless",
"source": " int total = 0; for (int i = 0; i < doc['goals'].length; ++i) { total += doc['goals'][i]; } return total; "
}
}
}
}
结果:
{
"took" : 7,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"fields" : {
"total_goals" : [
37
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"fields" : {
"total_goals" : [
87
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "3",
"_score" : 1.0,
"fields" : {
"total_goals" : [
75
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "4",
"_score" : 1.0,
"fields" : {
"total_goals" : [
25
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "5",
"_score" : 1.0,
"fields" : {
"total_goals" : [
5
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "6",
"_score" : 1.0,
"fields" : {
"total_goals" : [
41
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "7",
"_score" : 1.0,
"fields" : {
"total_goals" : [
31
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "8",
"_score" : 1.0,
"fields" : {
"total_goals" : [
23
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "39",
"_score" : 1.0,
"fields" : {
"total_goals" : [
51
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "10",
"_score" : 1.0,
"fields" : {
"total_goals" : [
31
]
}
}
]
}
}
以下示例使用 Painless 脚本按其组合的名字和姓氏对玩家进行排序。 使用 doc ['first'].value 和 doc ['last'].value 访问名称。
GET hockey/_search
{
"query": {
"match_all": {}
},
"sort": {
"_script": {
"type": "string",
"order": "asc",
"script": {
"lang": "painless",
"source": "doc['first.keyword'].value + ' ' + doc['last.keyword'].value"
}
}
}
}
结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "7",
"_score" : null,
"_source" : {
"first" : "david",
"last" : "jones",
"goals" : [
7,
19,
5
],
"assists" : [
3,
17,
4
],
"gp" : [
26,
45,
34
],
"born" : "1984/08/10"
},
"sort" : [
"david jones"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "6",
"_score" : null,
"_source" : {
"first" : "dennis",
"last" : "wideman",
"goals" : [
0,
26,
15
],
"assists" : [
11,
30,
24
],
"gp" : [
26,
81,
82
],
"born" : "1983/03/20"
},
"sort" : [
"dennis wideman"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "3",
"_score" : null,
"_source" : {
"first" : "jiri",
"last" : "hudler",
"goals" : [
5,
34,
36
],
"assists" : [
11,
62,
42
],
"gp" : [
24,
80,
79
],
"born" : "1984/01/04"
},
"sort" : [
"jiri hudler"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "1",
"_score" : null,
"_source" : {
"first" : "johnny",
"last" : "gaudreau",
"goals" : [
9,
27,
1
],
"assists" : [
17,
46,
0
],
"gp" : [
26,
82,
1
],
"born" : "1993/08/13"
},
"sort" : [
"johnny gaudreau"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "39",
"_score" : null,
"_source" : {
"first" : "mark",
"last" : "giordano",
"goals" : [
6,
30,
15
],
"assists" : [
3,
30,
24
],
"gp" : [
26,
60,
63
],
"born" : "1983/10/03"
},
"sort" : [
"mark giordano"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "4",
"_score" : null,
"_source" : {
"first" : "micheal",
"last" : "frolik",
"goals" : [
4,
6,
15
],
"assists" : [
8,
23,
15
],
"gp" : [
26,
82,
82
],
"born" : "1988/02/17"
},
"sort" : [
"micheal frolik"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "10",
"_score" : null,
"_source" : {
"first" : "mikael",
"last" : "backlund",
"goals" : [
3,
15,
13
],
"assists" : [
6,
24,
18
],
"gp" : [
26,
82,
82
],
"born" : "1989/03/17"
},
"sort" : [
"mikael backlund"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "5",
"_score" : null,
"_source" : {
"first" : "sam",
"last" : "bennett",
"goals" : [
5,
0,
0
],
"assists" : [
8,
1,
0
],
"gp" : [
26,
1,
0
],
"born" : "1996/06/20"
},
"sort" : [
"sam bennett"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "2",
"_score" : null,
"_source" : {
"first" : "sean",
"last" : "monohan",
"goals" : [
7,
54,
26
],
"assists" : [
11,
26,
13
],
"gp" : [
26,
82,
82
],
"born" : "1994/10/12"
},
"sort" : [
"sean monohan"
]
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "8",
"_score" : null,
"_source" : {
"first" : "tj",
"last" : "brodie",
"goals" : [
2,
14,
7
],
"assists" : [
8,
42,
30
],
"gp" : [
26,
82,
82
],
"born" : "1990/06/07"
},
"sort" : [
"tj brodie"
]
}
]
}
}
doc ['field'].value。如果文档中缺少该字段,则抛出异常。要检查文档是否缺少值,可以调用 doc ['field'] .size() == 0。
您还可以轻松更新字段。 您可以使用 ctx._source.<field-name> 访问字段的原始源。首先,让我们通过提交以下请求来查看玩家的源数据:
GET hockey/_search
{
"stored_fields": [
"_id",
"_source"
],
"query": {
"term": {
"_id": 1
}
}
}
结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"first" : "johnny",
"last" : "gaudreau",
"goals" : [
9,
27,
1
],
"assists" : [
17,
46,
0
],
"gp" : [
26,
82,
1
],
"born" : "1993/08/13"
}
}
]
}
}
要将玩家1的姓氏更改为 hockey,只需将 ctx._source.last 设置为新值:
POST hockey/_update/1
{
"script": {
"lang": "painless",
"source": "ctx._source.last = params.last",
"params": {
"last": "hockey"
}
}
}
您还可以向文档添加字段。 例如,此脚本添加一个包含玩家 nickname 为 hockey的新字段。
POST hockey/_update/1
{
"script": {
"lang": "painless",
"source": "ctx._source.last = params.last; ctx._source.nick = params.nick",
"params": {
"last": "gaudreau",
"nick": "hockey"
}
}
}
GET hockey/_doc/1
结果:
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "1",
"_version" : 4,
"_seq_no" : 12,
"_primary_term" : 1,
"found" : true,
"_source" : {
"first" : "johnny",
"last" : "hockey",
"goals" : [
9,
27,
1
],
"assists" : [
17,
46,
0
],
"gp" : [
26,
82,
1
],
"born" : "1993/08/13",
"nick" : "hockey"
}
}
有一个叫做 “nick” 的新字段被加入了。
我们甚至可以对日期类型来进行操作从而得到年月等信息:
GET hockey/_search
{
"script_fields": {
"birth_year": {
"script": {
"source": "doc.born.value.year"
}
}
}
}
结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1994
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "3",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1984
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "4",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1988
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "5",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1996
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "6",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1983
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "7",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1984
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "8",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1990
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "39",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1983
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "10",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1989
]
}
},
{
"_index" : "hockey",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"fields" : {
"birth_year" : [
1993
]
}
}
]
}
}
Elasticsearch第一次看到一个新脚本,它会编译它并将编译后的版本存储在缓存中。无论是 inline 或是 stored 脚本都存储在缓存中。新脚本可以驱逐缓存的脚本。默认的情况下是可以存储100个脚本。我们可以通过设置 script.cache.max_size 来改变其大小,或者通过 script.cache.expire 来设置过期的时间。这些设置需要在 config/elasticsearch.yml 里设置。
不能调试的脚本是非常难的。有一个好的调试手段无疑对我们的脚本编程是非常有用的。
Painless 没有 REPL,虽然有一天它很好,但它不会告诉你关于调试 Elasticsearch 中嵌入的 Painless 脚本的全部故事,因为脚本可以访问的数据或 “上下文” 是如此重要。 目前,调试嵌入式脚本的最佳方法是在选择位置抛出异常。 虽然你可以抛出自己的异常(throw new exception('whatever'),但 Painless 的沙箱会阻止你访问有用的信息,如对象的类型。 所以 Painless 有一个实用工具方法 Debug.explain,它会为你抛出异常。 例如,你可以使用 _explain 来探索 script query 可用的上下文。
PUT /hockey/_doc/1?refresh
{
"first": "johnny",
"last": "gaudreau",
"goals": [
9,
27,
1
],
"assists": [
17,
46,
0
],
"gp": [
26,
82,
1
]
}
POST /hockey/_explain/1
{
"query": {
"script": {
"script": "Debug.explain(doc.goals)"
}
}
}
这表明doc.goals类是通过 org.elasticsearch.index.fielddata.ScriptDocValues.Long 来响应的:
{
"error" : {
"root_cause" : [
{
"type" : "script_exception",
"reason" : "runtime error",
"painless_class" : "org.elasticsearch.index.fielddata.ScriptDocValues.Longs",
"to_string" : "[1, 9, 27]",
"java_class" : "org.elasticsearch.index.fielddata.ScriptDocValues$Longs",
"script_stack" : [
"Debug.explain(doc.goals)",
" ^---- HERE"
],
"script" : "Debug.explain(doc.goals)",
"lang" : "painless",
"position" : {
"offset" : 17,
"start" : 0,
"end" : 24
}
}
],
"type" : "script_exception",
"reason" : "runtime error",
"painless_class" : "org.elasticsearch.index.fielddata.ScriptDocValues.Longs",
"to_string" : "[1, 9, 27]",
"java_class" : "org.elasticsearch.index.fielddata.ScriptDocValues$Longs",
"script_stack" : [
"Debug.explain(doc.goals)",
" ^---- HERE"
],
"script" : "Debug.explain(doc.goals)",
"lang" : "painless",
"position" : {
"offset" : 17,
"start" : 0,
"end" : 24
},
"caused_by" : {
"type" : "painless_explain_error",
"reason" : null
}
},
"status" : 400
}
您可以使用相同的技巧来查看 _source 是 _update API 中的 LinkedHashMap:
POST /hockey/_update/1
{
"script": "Debug.explain(ctx._source)"
}
{
"error" : {
"root_cause" : [
{
"type" : "illegal_argument_exception",
"reason" : "failed to execute script"
}
],
"type" : "illegal_argument_exception",
"reason" : "failed to execute script",
"caused_by" : {
"type" : "script_exception",
"reason" : "runtime error",
"painless_class" : "java.util.LinkedHashMap",
"to_string" : "{first=johnny, last=gaudreau, goals=[9, 27, 1], assists=[17, 46, 0], gp=[26, 82, 1]}",
"java_class" : "java.util.LinkedHashMap",
"script_stack" : [
"Debug.explain(ctx._source)",
" ^---- HERE"
],
"script" : "Debug.explain(ctx._source)",
"lang" : "painless",
"position" : {
"offset" : 17,
"start" : 0,
"end" : 26
},
"caused_by" : {
"type" : "painless_explain_error",
"reason" : null
}
}
},
"status" : 400
}
参考:
【1】https://www.elastic.co/guide/en/elasticsearch/painless/current/painless-walkthrough.html
【2】https://www.elastic.co/guide/en/elasticsearch/painless/current/painless-debugging.html
本文系转载,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文系转载,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。