前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >检测图像中的圣诞树,不用深度学习,好家伙,还可以怎么搞!

检测图像中的圣诞树,不用深度学习,好家伙,还可以怎么搞!

作者头像
AI算法与图像处理
发布2021-01-20 15:33:39
5410
发布2021-01-20 15:33:39
举报

源码和素材:https://github.com/Largefreedom/Opencv_pra/tree/master/Tree_Detect

本篇文章将用 Python 来实现图片中的圣诞树的识别、标记,可理解为计算机视觉中的物体检测,先声明一下哈这里没有用到神经网络,都是传统方法

先看一下效果,以下是原图

下面是最终检测出来的效果图:

图中的圣诞树的外轮廓都用红线给标记出来了,效果看起来还不错吧~,下面是算法实现的整体思路,分为三个部分

1,提取图片特征点(根据图像明亮度,色调,饱和度)

上面展示的6张图像中,因为彩灯原因,圣诞树在整个图片中呈现出偏亮、色调偏暖,与背景偏冷、偏青色形成对比;

根据上面提到的思路先对圣诞树上特征点进行提取,这里对图像分别以亮度、色调、饱和度三个角度对图像做了条件筛选,筛选出图像中目标特征点集,筛选标准如下

  • 1,做亮度筛选时,先将RGB 转化为灰度图,提取灰度值大于220的区域(原图标准 0-255)
  • 2,把图像将RGB(0-255) 转化为 HSV(0-1)颜色空间,提取 HSV 中 hue (色调通道)值小于 0.2 或大于 0.95 的区域,小于 0.2 是为了提取图片中偏黄色,红色的特征点,大于 0.95 对应圣诞树边缘的紫红色区域
  • 3,图像 HSV 颜色空间中,提取 saturation(饱和度) 和 value(值) 大于 0.7 的部分

这里简单介绍一下 HSV ,HSV 为图片的一种颜色空间,与 RGB 三通道相似,RGB 分别表示红、绿、蓝三种通道;而 HSV 则代表 hue(色调),saturation(饱和度), value (亮度);

  • 色调H:用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,品红为300°;(本文将0-300度转化为 0-1.0 范围数值)
  • 饱和度S:取值范围为0.0~1.0;
  • 亮度V:取值范围为0.0(黑色)~1.0(白色)。

根据上面三个筛选条件,对图像进行处理,最终得到一个黑白相间的二值化图像,这里用 numpy 中的logical_andlogical_or 方法来聚合上面的三种条件;

从上图可以看到,图片中的黑点即提取到的特征点(圣诞树),基本大致轮廓已经出来了,但会有少许噪点,见图二、图四,建筑中的灯光、地平线特征也被提取出来了,但这些不是我们所需要的,所以需要下面的一个步骤:聚类,来剔除这些噪点

2,用 DBSCAN 算法对特征点进行聚类

上一步得到特征点之后,下面就对特征点集进行聚类,关于点集聚类,这里用基于空间密度的 DNSCAN 算法,这个算法已经被封装到 scikit-learn包中,使用时直接调用即可,但因为涉及一些参数设置问题,使用时需要注意两个参数:

  • eps ,算法中的一个参数,表示类与类样本间的最大距离,对于不同数据集和距离函数这个参数需要设置不同的值;这里设置的是 图片对角线长度的0.04倍,这样的话既能适应大分辨率图片,也能适用于小分辨率的图片
  • min_samples ,假设以某一点为中心,周围的样本数量(包括样本本身) ;值太小时,最终类别会太多,值太大时,最终类别太少;本文设置为 10 ;

特征点分类后,最终将圣诞树特征点部分全部标为红色,效果如下:

描边扩张后效果:

可以看到图 2,3,4 中的特征点分别分为两类,用不同的颜色进行标记;后面再做一次条件筛选:只取图片中特征点数量最多的类(圣诞树),就可以把图像中的噪点去除

3,对目标特征点集计算凸包,在原图上绘制

最后这一步就简单多了,有了特征点集,利用 scipy 包 中的 ConvexHull 方法计算 凸包 ,之后再利用matplotlib 将凸包在原图上进行绘制

小结

文章中的一些技术点是值得借鉴,例如前面提到的用色调、饱和度作为阈值条件来筛选特征点,及后面的 DBSCAN 聚类算法的使用;这些 Idea 不仅局限在圣诞树上,也可以用于检测其它的一些物体上面来,但需要多思考,多实践

最后在这里提一下为什么聚类算法这里用 DBSCAN,而不是经典的 KMeans;因为 KMeans 分类时需要设置类别数量(类别数量是我们提前没有办法确定的),并且在分类时仅以欧式距离作为参考,最终分类结果并不理想,参照下图

KMeans 算法

DBSCAN 算法

文章中用到核心代码

代码语言:javascript
复制
from PIL import Image
import numpy as np
import scipy
import matplotlib.colors as colors
from sklearn.cluster import DBSCAN
from math import ceil,sqrt




'''
Inputs:
    
    rgbimg: M,N,3 numpy 包含 uint(0-255) color image
    
    hueleftthr: Scalar constant to maximum  hue in  yellow-green region
    
    huerightthr: Scalar constant to maximum allowed hue in blue-purple region
    
    satthr: Scalar constant to select minimum allow saturation
    
    valthre: Scalar constant to select minimum allow value
    
    monothr: Scalar constant to select minimum allow monochrome
    
    maxpoints: Scalar constant maximum number of pixels  to forward to the DBSCAN clustering algoritm

    proxthresh: Proximity threshold to use for DBSCAN, as da fraction of the diagonal size of thre image
                接近阈值占图像对角线尺寸


Outputs:
    
    borderseg: [K,2,2] Nested list containing K pairs of x- and y- pixel values for drawimg the tree border
    
    X:  [P,2] List of pixels that passed the threshold step
    
    labels: [Q,2] List of cluster labels for points in  Xslice(see below)
    
    Xslice: [Q,2] Reduced list of pixels to be passed to DBSCAN


'''

'''实现脚本'''

def findtree(rgbimg,
             hueleftthr = 0.2,
             huerightthr = 0.95,
             satthr =0.7,
             valthr = 0.7,
             monothr = 220,
             maxpoints = 5000,
             proxthresh = 0.04):
    # 将 RGB 图像转化为 灰度图
    grayimg = np.asarray(Image.fromarray(rgbimg).convert('L'))

    # 将 rbg => hsv(float [0,1.0])
    hsvimg = colors.rgb_to_hsv(rgbimg.astype(float)/255)

    # 二值化阈值图像初始化

    binimg = np.zeros((rgbimg.shape[0],rgbimg.shape[1]))

    #1, heu < 0.2 or hue > 0.95(red or yellow)
    #2, saturated and bright both greater than 0.7
    # 满足以上条件被认为是圣诞树上的灯
    boolidx = np.logical_and(
        np.logical_and(
            np.logical_or((hsvimg[:,:,0]<hueleftthr),
            (hsvimg[:,:,0]>huerightthr)),
            (hsvimg[:,:,1]>satthr)),
            (hsvimg[:,:,2]>valthr))


    # 找到满足 hsv 标准的像素,赋值为255
    binimg[np.where(boolidx)] = 255
    # 添加像素来满足garay brightness 条件
    binimg[np.where(grayimg>monothr)] = 255

    # 用 DBSCAN 聚类算法分割这些点
    X = np.transpose(np.where(binimg==255))
    Xslice = X
    nsample = len(Xslice)

    if nsample > maxpoints:
        # 确保样本数不超过 DNSCAN 算法最大限度
        Xslice = X[range(0,nsample,int(ceil(float(nsample/maxpoints))))] # 将样本每隔几个采样一次

    # 将 DNSCAN 阈值接近像素单位,并运行 DBSCAN
    pixproxthr = proxthresh * sqrt(binimg.shape[0]**2 + binimg.shape[1]**2) # 对角巷长*proxthresh
    db = DBSCAN(eps = pixproxthr,min_samples=10).fit(Xslice) # 拟合样本
    labels = db.labels_.astype(int)

    # 寻找最大聚类
    unique_labels = set(labels)
    maxclustpt = 0

    for k in unique_labels:
        class_numbers = [index[0] for index in np.argwhere(labels==k)]
        if(len(class_numbers) > maxclustpt):
            points = Xslice[class_numbers]
            hull = scipy.spatial.ConvexHull(points) # 建立凸包
            maxclustpt = len(class_numbers)
            borderseg = [[points[simplex,0], points[simplex,1]] for simplex in hull.simplices]


    return borderseg,X,labels,Xslice

启动脚本

代码语言:javascript
复制
'''
@author:zeroing
@wx公众号:小张Python

'''

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from findtree import findtree
import os

path_dir = 'D:/ceshi_11/findtree'

path_list = [os.path.join(path_dir,str(i)) for i in os.listdir(path_dir)]


# 初始化figure size

fgsz = (16,8)

figthresh = plt.figure(figsize = fgsz,facecolor ='w')
figclust  = plt.figure(figsize = fgsz,facecolor ='w')
figcltwo = plt.figure(figsize = fgsz,facecolor = 'w')
figborder = plt.figure(figsize = fgsz,facecolor = 'w')
figorigin = plt.figure(figsize = fgsz,facecolor = 'w')


# 每张图设置一个 窗口名
figthresh.canvas.set_window_title('Thresholded HSV and Monochrome Brightness')
figclust.canvas.set_window_title('DBSCAN Clusters (Raw Pixel Output)')
figcltwo.canvas.set_window_title('DBSCAN Clusters (Slightly Dilated for Display)')
figborder.canvas.set_window_title('Trees with Borders')
figorigin.canvas.set_window_title("Original Image")


for ii,name in enumerate(path_list):
    # 打开图片
    rgbimg = np.asarray(Image.open(str(name)))

    # 运行脚本找到 bordeseg,X,Labels,Xslce
    borderseg,X,labels,Xslice = findtree(rgbimg)

    # 展示阈值分割后的图像
    axthresh =  figthresh.add_subplot(2,3,ii+1)
    axthresh.set_xticks([])
    axthresh.set_yticks([])
    binimg = np.zeros((rgbimg.shape[0],rgbimg.shape[1]))
    for v,h in X:
        binimg[v,h] = 255 # 初步筛选之后坐标点

    axthresh.imshow(binimg,interpolation = 'nearest',cmap = 'Greys')

    # Display color-coded clusters
    axclust = figclust.add_subplot(2,3,ii+1)
    axclust.set_xticks([])
    axclust.set_yticks([])
    axcltwo = figcltwo.add_subplot(2,3,ii+1)
    axcltwo.set_xticks([])
    axcltwo.set_yticks([])
    axcltwo.imshow(binimg,interpolation = 'nearest',cmap = 'Greys')

    clustimg = np.ones(rgbimg.shape)
    unique_labels = set(labels)
    # 为每个聚类生成单个颜色
    plcol = cm.rainbow_r(np.linspace(0,1,len(unique_labels)))
    print('plcol',plcol)
    for lbl,pix in zip(labels,Xslice):
        for col,unqlbl in zip(plcol,unique_labels):
            if lbl == unqlbl:
                # -1 表示无聚类成员
                if lbl == -1:
                    col = [0.0,0.0,0.0,1.0]
                for ij in range(3):
                    clustimg[pix[0],pix[1],ij] = col[ij]
            # 扩张 图像,用于更好展示
                axcltwo.plot(pix[1],pix[0],'o',markerfacecolor= col,markersize = 1,markeredgecolor = col)

    axclust.imshow(clustimg)
    axcltwo.set_xlim(0,binimg.shape[1]-1)
    axcltwo.set_ylim(binimg.shape[0],-1)

    # 在原图树边缘进行绘制

    axborder = figborder.add_subplot(2,3,ii+1)
    axborder.set_axis_off()
    axborder.imshow(rgbimg,interpolation ='nearest')
    for vseg,hseg in borderseg:
        axborder.plot(hseg,vseg,'g-',lw =3)
    axborder.set_xlim(0,binimg.shape[1]-1)
    axborder.set_ylim(binimg.shape[0],-1)


    # 保存原图
    origin_fig1 = figorigin.add_subplot(2, 3, ii + 1)
    origin_fig1.set_axis_off()
    origin_fig1.imshow(rgbimg, interpolation='nearest')
    axborder.set_xlim(0, binimg.shape[1] - 1)
    axborder.set_ylim(binimg.shape[0], -1)


    # axborder.savefig("D:/ceshi_11/findtree/final_")

    print(name,'Sucessfully find it !!!!!!!!')

plt.show()

好了,以上就是本篇文章的全部内容,如果觉得内容不错,求赞、求分享、求留言;最后感谢大家的阅读!

参考链接:https://stackoverflow.com/questions/20772893/how-to-detect-a-christmas-tree

代码语言:javascript
复制
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-01-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI算法与图像处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1,提取图片特征点(根据图像明亮度,色调,饱和度)
  • 2,用 DBSCAN 算法对特征点进行聚类
  • 3,对目标特征点集计算凸包,在原图上绘制
  • 小结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档