前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >实现、动态展示多种社区发现算法,这个Python库助你发现网络图的社区结构

实现、动态展示多种社区发现算法,这个Python库助你发现网络图的社区结构

作者头像
机器之心
发布2021-03-15 11:50:00
4.1K0
发布2021-03-15 11:50:00
举报
文章被收录于专栏:机器之心

机器之心报道

编辑:杜伟、陈萍

熟知社区发现算法,你不能错过这个 Python 库。它涵盖 Louvain 算法、Girvan-Newman 算法等多种社区发现算法,还具有可视化功能。

网络是由一些紧密相连的节点组成的,并且根据不同节点之间连接的紧密程度,网络也可视为由不同簇组成。簇内的节点之间有着更为紧密的连接,不同簇之间的连接则相对稀疏。这种簇被称为网络中的社区结构(community structure)。

由此衍生出来的社区发现(community detection)算法用来发现网络中的社区结构,这类算法包括 Louvain 算法、Girvan-Newman 算法以及 Bron-Kerbosch 算法等。

最近,机器之心在 GitHub 上发现了一个可以发现图中社区结构的 Python 库 communities,该库由软件工程师 Jonathan Shobrook 创建。

项目地址:https://github.com/shobrook/communities

首先,该库可以实现以下几种社区发现算法:

  • Louvain 算法
  • Girvan-Newman 算法
  • 层次聚类
  • 谱聚类
  • Bron-Kerbosch 算法

其次,用户还可以使用 communities 库来可视化上述几种算法,下图为空手道俱乐部(Zachary's karate club)网络中 Louvain 算法的可视化结果:

该库的安装方法也非常简单,可采用 pip 的方式安装 communities,代码如下:

代码语言:javascript
复制
$ pip install communities

对于这个 Python 库,很多网友给予了高度评价,表示会去尝试。

算法详解

Louvain 算法

代码语言:javascript
复制
louvain_method(adj_matrix : numpy.ndarray, n : int = None) -> list

该算法来源于文章《Fast unfolding of communities in large networks》,简称为 Louvian。

作为一种基于模块度(Modularity)的社区发现算法,Louvain 算法在效率和效果上都表现比较好,并且能够发现层次性的社区结构,其优化的目标是最大化整个图属性结构(社区网络)的模块度。

Louvain 算法对最大化图模块性的社区进行贪婪搜索。如果一个图具有高密度的群体内边缘和低密度的群体间边缘,则称之为模图。

示例代码如下:

代码语言:javascript
复制
from communities.algorithms import louvain_methodad

j_matrix = [...]
communities, _ = louvain_method(adj_matrix)

Girvan-Newman 算法

代码语言:javascript
复制
girvan_newman(adj_matrix : numpy.ndarray, n : int = None) -> list

该算法来源于文章《Community structure in social and biological networks》。

Girvan-Newman 算法迭代删除边以创建更多连接的组件。每个组件都被视为一个 community,当模块度不能再增加时,算法停止去除边缘。

示例代码如下:

代码语言:javascript
复制
from communities.algorithms import girvan_newman

adj_matrix = [...]
communities, _ = girvan_newman(adj_matrix)

层次聚类

代码语言:javascript
复制
hierarchical_clustering(adj_matrix : numpy.ndarray, metric : str = "cosine", linkage : str = "single", n : int = None) -> list

层次聚类实现了一种自底向上、分层的聚类算法。每个节点从自己 的社区开始,然后,随着层次结构的建立,最相似的社区被合并。社区会一直被合并,直到在模块度方面没有进一步的进展。

示例代码如下:

代码语言:javascript
复制
from communities.algorithms import hierarchical_clustering

adj_matrix = [...]
communities = hierarchical_clustering(adj_matrix, metric="euclidean", linkage="complete")

谱聚类

代码语言:javascript
复制
spectral_clustering(adj_matrix : numpy.ndarray, k : int) -> list

这种类型的算法假定邻接矩阵的特征值包含有关社区结构的信息。

示例代码如下:

代码语言:javascript
复制
from communities.algorithms import spectral_clustering

adj_matrix = [...]
communities = spectral_clustering(adj_matrix, k=5)

Bron-Kerbosch 算法

代码语言:javascript
复制
bron_kerbosch(adj_matrix : numpy.ndarray, pivot : bool = False) -> list

Bron-Kerbosch 算法实现用于最大团检测(maximal clique detection)。图中的最大团是形成一个完整图的节点子集,如果向该子集中添加其他节点,则它将不再完整。将最大团视为社区是合理的,因为团是图中连接最紧密的节点群。因为一个节点可以是多个社区的成员,所以该算法有时会识别重叠的社区。

示例代码如下:

代码语言:javascript
复制
from communities.algorithms import bron_kerbosch

adj_matrix = [...]
communities = bron_kerbosch(adj_matrix, pivot=True)

可视化

绘图

代码语言:javascript
复制
draw_communities(adj_matrix : numpy.ndarray, communities : list, dark : bool = False, filename : str = None, seed : int = 1)

可视化图(graph),将节点分组至它们所属的社区和颜色编码中。返回代表绘图的 matplotlib.axes.Axes。示例代码如下:

代码语言:javascript
复制
from communities.algorithms import louvain_method
from communities.visualization import draw_communities

adj_matrix = [...]
communities, frames = louvain_method(adj_matrix)

draw_communities(adj_matrix, communities)

可视化图如下:

Louvain 算法的动图展示

代码语言:javascript
复制
louvain_animation(adj_matrix : numpy.ndarray, frames : list, dark : bool = False, duration : int = 15, filename : str = None, dpi : int = None, seed : int = 2)

Louvain 算法在图中的应用可以实现动图展示,其中每个节点的颜色代表其所属的社区,并且同一社区中的节点聚类结合在一起。

示例代码如下:

代码语言:javascript
复制
from communities.algorithms import louvain_method
from communities.visualization import louvain_animation

adj_matrix = [...]
communities, frames = louvain_method(adj_matrix)

louvain_animation(adj_matrix, frames)

动图展示如下:

参考链接:

https://www.codenong.com/cs105912940/

https://www.reddit.com/r/MachineLearning/comments/lozys9/p_i_made_communities_a_library_of_clustering/

© THE END

转载请联系本公众号获得授权

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-02-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档