专栏首页机器学习与统计学机器学习入门指南(2021版)

机器学习入门指南(2021版)

大家好,我是老胡。

这是为朋友社群准备的一篇机器学习入门指南,分享了我机器学习之路看过的一些书、教程、视频,还有学习经验和建议,希望能对大家的学习有所帮助。

pdf版思维导图,后台回复:指南

Python——书

之前跟出版社合作,书柜里积攒了很多Python相关的书,这里推荐三本最有价值的吧:

  • 《流畅的Python》,很厚,比较全面,可以作为工具书常常翻看。
  • 《 Python编程从入门到实践(第2版)》 非常全面,对新手还算友好,里面有很多的练习项目非常不错。
  • 《利用Python进行数据分析·第2版》 数据分析入门必读书,主要介绍了python 3个库numpy(数组),pandas(数据分析)和matplotlib(绘图)的学习。有开源版,就不用买了,下载链接及代码如下:

https://github.com/iamseancheney/python_for_data_analysis_2nd_chinese_version

Python——教程

学习Python最好的入门线上教程,首推Python官方文档 https://docs.python.org/zh-cn/3/tutorial/index.html

官方文档足够详细和系统,但是内容太庞大,学习来会有点吃力,我建议只看tutorial即可,就是上面的链接。

直接啃官方文档的教材,不如老师讲给你听来的效率高。廖雪峰的Python新手教程也是个不错的选择,每一节都有练习题,学习来更顺畅,对新手很友好。 https://www.liaoxuefeng.com/wiki/1016959663602400

机器学习最常用的库少不了Numpy 、Pandas 、Matplotlib这些库我觉得看官方文档就好了,不过英文不好的同学可能就不满意了,这里分别列一下这些库的官方文档和我觉得很不错的中文教程,提醒一下哈,官方文档只需要看我列出的链接即可。

Numpy 官方文档:https://numpy.org/doc/stable/user/quickstart.html 中文教程:https://www.numpy.org.cn/user/quickstart.html Pandas 官方文档:https://pandas.pydata.org/docs/user_guide/10min.html 中文教程:https://www.pypandas.cn/docs/getting_started/10min.html Matplotlib 官方文档:https://matplotlib.org/stable/tutorials/introductory/usage.html 中文教程:https://www.matplotlib.org.cn/tutorials/

Python——视频

实话实话,我没有完整的看过任何Python视频。归根结底,Python入门很简单,看视频效率太低。传言B站的[小甲鱼]零基础入门学习Python不错,简单看了一眼,确实0基础。我们用Python是用来学机器学习的,喜欢看视频学习的同学可以看看,建议只看P1-P53即可。

《零基础入门学习Python》:https://www.bilibili.com/video/av27789609

机器学习——书

市面上凡推荐机器学习的书,都少不了李航的《统计学习方法》和周志华的《机器学习》,我当初也是看了大佬推荐,在这两本书上耗费了极多的时间。但这两本我觉得都不太适合入门,尤其是统计学习方法,简直就是上等武功秘籍,太过精炼,啃起来太吃力。对比起来周老师的《机器学习》相对好点,其中有些公式推导有点跳,Datawhale 出了一本开源的《机器学习公式详解》是个很好的补充(https://datawhalechina.github.io/pumpkin-book)。周世华的《机器学习》是必不可少的工具书,值得反复阅读,不过建议在看过视频教程之后。

偏应用的书,只推荐一本,其他的都不要看!!!:《机器学习实战:基于Scikit-Learn、Keras和TensorFlow(原书第2版)》,入门可以先看前 9 章。

市面上很少有书能够把机器学习在业务层面的应用介绍清楚,比如模型解释、模型上线,模型监控等等,没有看到特别详细的,有一本还算满意,就是知名度比较低:《机器学习:软件工程方法与实现》。

现在无论是竞赛还是工业界,boost模型都应用十分广泛,分类、回归、排序,XGBoost都能搞。最后再介绍一本我认为的必读:《深入理解XGBoost:高效机器学习算法与进阶》,作者是XGBoost开源社区贡献者何龙。这本书以机器学习基础知识做铺垫,深入剖析了XGBoost的原理、分布式实现、模型优化、深度应用等。

机器学习——教程

教程没有看到太好的,除了sklearn的文档,只推荐吴恩达、李宏毅、林轩田三位老师的视频课件。课件这里不单独列出来了,下载链接我放到思维导图里了。

Sklearn 官方文档:https://scikit-learn.org/stable/user_guide.html 中文教程:https://sklearn.apachecn.org/

机器学习——视频

与Python不同,机器学习基础我觉得最好还是跟着视频学,因为初学机器学习算法,涉及很多公式推导,非常难理解,跟着视频学起来会轻松不少。

视频首推吴恩达的公开课,这是学习机器学习基础知识的最好的课程。英语不好的同学也不要担心,视频是有中文字幕的。 https://www.bilibili.com/video/BV164411b7dx

作为补充,时间充裕的同学可以看看台大李宏毅的机器学习公开课,特点是中文授课,比较轻松愉快。

https://www.bilibili.com/video/BV1pE411g7Wi

时间更充裕的也可以看看林轩田的视频课,只看基石部分即可。 https://www.bilibili.com/video/BV1Ft41197Dy

机器学习——数学基础

数学基础这一块是个无底洞,不太建议大家耗费过多时间,用到了再补也不迟。

也不建议大家看书,基础确实特别薄弱的同学,只推荐一本:《机器学习的数学》,这本书特别全面的介绍了微积分、线性代数、概率统计、信息论、随机过程、图论等内容。再强调一遍,此书仅适于基础特别薄弱的同学,但凡有点基础就别看书

我感觉机器学习中用到最多的应该是线代,喜欢看视频的可以看看李宏毅的机器学习中的线性代数: https://www.bilibili.com/video/BV1G7411f7BE/

或者3blue1brown:线性代数的本质 https://www.bilibili.com/video/BV1Ys411k7yQ

其他数学基础相关的电子书,我也放到思维导图中了。

一些经验和建议

1、我敢肯定很多初学者都是资料收集爱好者,越攒越多反而不知道从何开始。我强烈建议把资料都扔掉,以我的这一套为准,一以贯之的学下去。

2、就像前面我提到的,很多东西先不要深究,不要在某些地方卡太久(比如数学部分,比如编程基础),先学下去,学完。了解大的框架之后,以后用到哪里,再回过来补也不迟。

3、机器学习的各种算法没必要样样精通,前期,常用的比如LR、树模型、RF、XGBoost等等掌握好就不错了。

4、我身边一些优秀的程序员、分析师、工程师都非常推崇“做中学,学中做”,无论是书本还是视频,看到一些好的方法和技巧,要立即自己实现一遍。看起来非常简单的东西,真真动手的时候才会发现自己的不足。快速学完上述内容就尽快开始实践吧,可以先复现天池或kaggle上优秀的notebook,然后就参与一些入门竞赛。

5、如果你已有工作,最好的还是在业务中寻找机器学习应用场景,然后尝试去开发一个适用的模型。不懂就搜索,学习。这是我所知最好的,最有价值的学习方法。

6、输出也是特别好的学习方式,输出就是把新学到的知识用某种方式讲给别人听,做到让他们也能理解、学会。我比较喜欢写笔记(我常用的是微软的OneNote),然后把笔记整理成文章发到博客上。这样不仅使对自己知识掌握程度的一种检验,发现薄弱点,也可以让大家共同监督,相互学习,教学相长。

OK,以上就是所有内容。大家也可以加一下老胡的微信(领取可编辑版思维导图),相互交流,围观朋友圈~~~

本文分享自微信公众号 - 机器学习与统计学(tjxj666),作者:student老胡

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2021-04-13

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 【机器学习】有趣的机器学习:最简明入门指南

    在听到人们谈论机器学习的时候,你是不是对它的涵义只有几个模糊的认识呢?你是不是已经厌倦了在和同事交谈时只能一直点头?让我们改变一下吧! 本指南的读者对象是所有对...

    陆勤_数据人网
  • 入门指南:为期一周的机器学习

    在门外汉看来,机器学习(Machine Learing,ML)入门是个不可完成的任务。 如果你选错了方向,确实就是不可能的了。 然而,在我学习机器学习的基本知识...

    机器人网
  • 机器学习新手必看:Jupyter Notebook入门指南

    【导读】Jupyter Notebook 是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码、数学方程、可视化和 Markdown,其用途包括...

    IT派
  • 机器学习新手必看:Jupyter Notebook入门指南

    磐创AI
  • 机器学习新手必看:Jupyter Notebook入门指南

    用户1737318
  • 机器学习爱好者必读的入门指南

    本指南适用于任何对机器学习(Machine Learning,ML)感兴趣但不知道从何开始的人。

    AI算法与图像处理
  • 机器学习爱好者必读的入门指南

    本指南适用于任何对机器学习(Machine Learning,ML)感兴趣但不知道从何开始的人。(莫烦Python机器学习)

    生信宝典
  • 自动机器学习之Auto-Keras与AutoML入门指南

    自动机器学习是现在非常流行的一个概念,我们在进行深度学习的时候需要调整的典型超参数包括优化算法(SGD,Adam等),学习速率和学习速率调度以及正则化等。根据数...

    小草AI
  • 叮~AutoML自动化机器学习入门指南,来了

    之前的工作中也有多少接触过这个AutoML(Automated Machine Learning)的概念,简单来说就是把模型开发的标准过程模块化,都交给一些自动...

    Sam Gor
  • LDAP注入入门学习指南

    LDAP(Lightweight Directory Access Protocol):轻量级目录访问协议,是一种在线目录访问协议。LDAP主要用于目录中资源的...

    HACK学习
  • 【机器学习】机器学习温和指南

    摘要:机器学习与NLP专家、MonkeyLearn联合创始人&CEO Raúl Garreta面向初学者大体概括使用机器学习过程中的重要概念,应用程序和挑战,旨...

    陆勤_数据人网
  • 机器学习自学指南

    有很多途径来学习机器学习。有丰富的资源:有书籍,有课程可以参与,可以参加比赛,有大量供你使用的工具。在这篇文章中,我想围绕这些活动提出一些你机器学习之旅大致会有...

    xixigiggling
  • 机器学习自学指南

    你有许多方法和资源来学习机器学习:阅读书籍、学习课程、参加比赛和各种可用的工具。在这篇文章中,我想使这些活动更为体系化,并列出一个大致的顺序,以说明在普通程序员...

  • 【指南】非技术人员的机器学习指南:如何轻松地进入机器学习

    世界末日 首先,我们听说机器人正在做蓝领工作。 ? 然后,我们发现白领工作也不安全。 ? 在我们恐慌我们将要失业,我们发现这些机器人正在背后议论我们。 ? 可能...

    AiTechYun
  • 人工智能、机器学习和认知计算入门指南

    几千年来,人们就已经有了思考如何构建智能机器的想法。从那时开始,人工智能 (AI) 经历了起起落落,这证明了它的成功以及还未实现的潜能。如今,随时都能听到应用机...

    陆勤_数据人网
  • 机器学习温和指南

    用户1737318
  • 机器学习温和指南

    【编者按】机器学习是如今人工智能领域中进展最大的方面,更多的初学者开始进入了这个领域。在这篇文章中,机器学习与NLP专家、MonkeyLearn联合创始人&CE...

    CSDN技术头条
  • 机器学习实用指南

    初识机器学习 也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人脸;也自然而然点开今日头条推给你的新闻;也习...

    IT派
  • 机器学习算法地图2021版

    为了帮助大家理清机器学习的知识脉络,建立整体的知识结构,2018年SIGAI推出过机器学习算法地图,纸质版和电子版的阅读量超过10万。两年之后,我们对算法地图进...

    SIGAI学习与实践平台

扫码关注云+社区

领取腾讯云代金券