专栏首页深度学习和计算机视觉如何用 Python 将 Excel 表格转成可视化图形?

如何用 Python 将 Excel 表格转成可视化图形?

前言

大家知道,考研很大一部分也是考信息收集能力。每年往往有很多人就是在这上面栽跟头了,不能正确分析各大院校往年的录取信息,进而没能选择合适的报考院校。

至于很多院校的录取信息是以 PDF 形式发布,例如我手上的深大电通录取结果,这就需要我们先把 PDF 转化为 Excel 啦。

(1)PDF

(2)Excel

有了 Excel,那我们就可以为所欲为了!

开始

1. 载入 Excel 表格

#coding=utf8
import xlrd
import numpy as np
from pyecharts.charts import Bar
from pyecharts.charts import Pie, Grid
from pyecharts import options as opts

#==================== 准备数据 ====================
# 导入Excel 文件
data =  xlrd.open_workbook("C:/深圳大学电子与信息工程学院2020年电子信息硕士生拟录取名单.xlsx")
# 载入第一个表格
table = data.sheets()[0]

2. 提取 Excel 表格数据

tables = []

def Read_Excel(excel):
    # 从第4行开始读取数据,因为这个Excel文件里面从第四行开始才是考生信息
    for rows in range(3, excel.nrows-1):
        dict_ = {"id":"", "name":"", "status":"", "preliminary_score":"", "retest_score":"", "total_score":"", "ranking":""}
        dict_["id"] = table.cell_value(rows, 1)
        dict_["name"] = table.cell_value(rows, 2)
        dict_["status"] = table.cell_value(rows, 3)
        dict_["remarks"] = table.cell_value(rows, 4)
        dict_["preliminary_score"] = table.cell_value(rows, 5)
        dict_["retest_score"] = table.cell_value(rows, 6)
        dict_["total_score"] = table.cell_value(rows, 7)
        dict_["ranking"] = table.cell_value(rows, 8)
        # 将未被录取或者非普通计划录取的考生滤除
        if dict_["status"] == str("拟录取") and dict_["remarks"] == str("普通计划"):
            tables.append(dict_)

我们打印一下看看是否正确取出数据:

# 执行上面方法
Read_Excel(table)
for i in tables:
    print(i)

可以看到一切顺利。

3. 数据分段统计

这步因人而异,我只是想把各个分数段进行单独统计而已,大家也可以根据自己的喜好做其它的处理。

num_score_300_310 = 0
num_score_310_320 = 0
num_score_320_330 = 0
num_score_330_340 = 0
num_score_340_350 = 0
num_score_350_360 = 0
num_score_360_370 = 0
num_score_370_380 = 0
num_score_380_390 = 0
num_score_390_400 = 0
num_score_400_410 = 0
min_score = 999
max_score = 0

# 将各个分段的数量统计
for i in tables:
    score = i["preliminary_score"]
    if score > max_score:
        max_score = score
    if score < min_score:
        min_score = score

    if score in range(300, 310):
        num_score_300_310 = num_score_300_310 + 1
    elif score in range(310, 320):
        num_score_310_320 = num_score_310_320 + 1
    elif score in range(320, 330):
        num_score_320_330 = num_score_320_330 + 1
    elif score in range(330, 340):
        num_score_330_340 = num_score_330_340 + 1
    elif score in range(340, 350):
        num_score_340_350 = num_score_340_350 + 1
    elif score in range(350, 360):
        num_score_350_360 = num_score_350_360 + 1
    elif score in range(360, 370):
        num_score_360_370 = num_score_360_370 + 1
    elif score in range(370, 380):
        num_score_370_380 = num_score_370_380 + 1
    elif score in range(380, 390):
        num_score_380_390 = num_score_380_390 + 1
    elif score in range(390, 400):
        num_score_390_400 = num_score_390_400 + 1
    elif score in range(400, 410):
        num_score_400_410 = num_score_400_410 + 1

# 构建两个元组用以后期建表方便
bar_x_axis_data = ("300-310", "310-320", "320-330", "330-340", "340-350", "350-360", "360-370", "370-380", "380-390", "390-400", "400-410")
bar_y_axis_data = (num_score_300_310, num_score_310_320, num_score_320_330,\
                   num_score_330_340, num_score_340_350, num_score_350_360,\
                   num_score_360_370, num_score_370_380, num_score_380_390,\
                   num_score_390_400, num_score_400_410)

绘制可视化图形

1、柱状图:

#===================== 柱状图 =====================
# 构建柱状图
c = (
    Bar()
    .add_xaxis(bar_x_axis_data)
    .add_yaxis("录取考生", bar_y_axis_data, color="#af00ff")
    .set_global_opts(title_opts=opts.TitleOpts(title="数量"))
    .render("C:/录取数据图.html")
)

2、饼图:

#====================== 饼图 ======================
c = (
    Pie(init_opts=opts.InitOpts(height="800px", width="1200px"))
    .add("录取分数概览",
              [list(z) for z in zip(bar_x_axis_data, bar_y_axis_data)],
              center=["35%", "38%"],
              radius="40%",
              label_opts=opts.LabelOpts(
                  formatter="{b|{b}: }{c}  {per|{d}%}  ",
                  rich={
                "b": {"fontSize": 16, "lineHeight": 33},
                "per": {
                    "color": "#eee",
                    "backgroundColor": "#334455",
                    "padding": [2, 4],
                    "borderRadius": 2,
                },
            }
        ))
        .set_global_opts(title_opts=opts.TitleOpts(title="录取", subtitle='Made by 王昊'),
                          legend_opts=opts.LegendOpts(pos_left="0%", pos_top="65%"))                     
        .render("C:/录取饼图.html")
)

大功告成!!是不是超级直观哈哈!

本文分享自微信公众号 - 小白学视觉(NoobCV)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2021-05-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 如何用 Python 将 Excel 表格转成可视化图形?

    大家知道,考研很大一部分也是考信息收集能力。每年往往有很多人就是在这上面栽跟头了,不能正确分析各大院校往年的录取信息,进而没能选择合适的报考院校。

    Python进击者
  • 再见 VBA!神器工具统一 Excel 和 Python

    经常给大家推荐好用的数据分析工具,也收到了铁子们的各种好评。这次也不例外,我要再推荐一个,而且是个爆款神器。

    数据森麟
  • 如何用 Python 执行常见的 Excel 和 SQL 任务

    作者:ROGER HUANG 本文翻译自:http://code-love.com/2017/04/30/excel-sql-python/ 来源:https:...

    数据科学社区
  • 用Python执行SQL、Excel常见任务?10个方法全搞定!

    数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更...

    Python数据科学
  • Python交互式数据分析报告框架:Dash

    译者序 原文于2017年6月21日发布,时过半载,将这篇既不是教程,也不是新闻的产品发布稿做了一番翻译,为何?只因去年下半年的时候,用R语言的博哥和龙少有Sh...

    Python中文社区
  • Jupyter Notebooks嵌入Excel并使用Python替代VBA宏

    以前,Excel和Python Jupyter Notebook之间我们只能选择一个。但是现在随着PyXLL-Jupyter软件包的推出,可以将两者一起使用。

    deephub
  • 请停止使用Excel进行数据分析,升级到Python吧

    2017年,全球估计有7.5亿人使用Excel。2017年,世界人口约为76亿。这意味着大约有10%的人使用Excel,我猜大部分是用于数据分析。

    HuangWeiAI
  • Excel插件,效果超好的地图可视化,可绘制区县!

    在笔者所接触到的地图可视化过程中(没有专门深入,欢迎补充),简单介绍下所知道的情形。

    寒树Office与RPA
  • 【技能get】简单而有效的 EXCEL 数据分析小技巧

    作者 CDA 数据分析师 我一直很欣赏 EXCEL 蕴藏的巨大能量。这款软件不仅具备基本的数据运算,还能使用它对数据进行分析。EXCEL 被广泛运用到很多领域...

    CDA数据分析师
  • 翻译 | 简单而有效的EXCEL数据分析小技巧

    介绍 我一直很欣赏EXCEL蕴藏的巨大能量。这款软件不仅具备基本的数据运算,还能使用它对数据进行分析。EXCEL被广泛运用到很多领域,例如:金融建模和商业预测。...

    CDA数据分析师
  • 做数据只知道Excel?Jupyter Notebook也要学起来了

    如果你是一名交易员或者从事金融服务行业,那么 Excel 就是你的生计之本。有了它,你可以分析价格和实时数据、评估交易组合、计算 VaR、执行回测等等;有了它,...

    机器之心
  • 向Excel说再见,神级编辑器统一表格与Python

    是的,在一个界面上同时展示可视化表格与代码,而且同时通过表格与代码修改数据,这不就是 Python 与 Excel 的结合吗?

    小小詹同学
  • 这个神级编辑器给 Excel 加上了 Python 功能!

    很多开发者说自从有了 Python/Pandas,Excel 都不怎么用了,用它来处理与可视化表格非常快速。但是这样还是有一大缺陷,操作不是可视化的表格,因此对...

    统计学家
  • 向Excel说再见,神级编辑器统一表格与Python

    是的,在一个界面上同时展示可视化表格与代码,而且同时通过表格与代码修改数据,这不就是 Python 与 Excel 的结合吗?

    CDA数据分析师
  • 「补视频」震惊!地图可视化竟能如此玩,零门槛,全免费,效果远胜主流作图工具!

    在笔者所接触到的地图可视化过程中(没有专门深入,欢迎补充),简单介绍下所知道的情形。

    Excel催化剂
  • Django 2.1.7 使用django-excel上传、下载excel报表

    在日常的开发中存在上传报表文件、提供下载报表文件的功能,本次使用django-excel这个开源库来做一个下载excel报表文件的示例。

    Devops海洋的渔夫
  • R语言学习笔记——柱形图

    今天分享R语言中的柱形图,所有图表语法都基于ggplot2包中的ggplot函数完成 。 其实R语言本身就带有各种作图函数,比如plot、bar、pie等,而且...

    数据小磨坊
  • 别再问我Python怎么操作Word了!

    在之前的自动化系列文章中,我们分别讲解过?Python操作Excel利器openpyxl,也讲过?Python操作PDF的几种方式,今天我们将通过代码讲解Pyt...

    刘早起
  • 向Excel说再见,神级编辑器统一表格与Python

    近日,开发者构建了名为 Grid studio 的开源项目,它是一个基于网页的表格应用,完全结合了 Python 和 Excel 的优势。

    华章科技

扫码关注云+社区

领取腾讯云代金券