Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >最短路径:Dijkstra算法(求单源最短路径)Floyd算法(求各顶点之间最短路径)[通俗易懂]

最短路径:Dijkstra算法(求单源最短路径)Floyd算法(求各顶点之间最短路径)[通俗易懂]

作者头像
全栈程序员站长
发布于 2022-06-25 05:28:22
发布于 2022-06-25 05:28:22
2.3K00
代码可运行
举报
运行总次数:0
代码可运行

大家好,又见面了,我是你们的朋友全栈君。

最短路径:

在一个带权图中,顶点V0到图中任意一个顶点Vi的一条路径所经过边上的权值之和,定义为该路径的带权路径长度,把带权路径最短的那条路径称为最短路径。

DiskStra算法:

求单源最短路径,即求一个顶点到任意顶点的最短路径,其时间复杂度为O(V*V)

如图所示:求顶点0到各顶点之间的最短路径

代码实现:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include<stdio.h>
#include<stdlib.h>
#define MaxVexNum 50
#define MaxInt 32767
#define MaxEdgeNum 50
//邻接矩阵
typedef int VertexType;
typedef int EdgeType;
typedef struct AMGraph{
	VertexType vexs[MaxVexNum];//顶点表 
	EdgeType arcs[MaxVexNum][MaxVexNum];//邻接矩阵表 
	int vexnum,edgenum;//顶点数,边数 
}AMGraph; 

void createGraph(AMGraph &g){//创建无向图 
	printf("请输入顶点数:");
	scanf("%d",&g.vexnum);
	printf("\n请输入边数:");
	scanf("%d",&g.edgenum);
	
	//初始化顶点表 
	for(int i=0;i<g.vexnum;i++){
		g.vexs[i]=i; 
	} 
	for(int i=0;i<g.vexnum;i++){
		for(int j=0;j<g.vexnum;j++){
			g.arcs[i][j]=MaxInt;
			if(i==j) g.arcs[i][j]=0;
		}
	} 
	printf("请输入边的信息以及边的权值(顶点是0~n-1)\n");
	for(int i=0;i<g.edgenum;i++){
		int x,y,w;
		scanf("%d%d%d",&x,&y,&w);
		g.arcs[x][y]=w;
		//g.arcs[y][x]=w;
	}
}
void PrintGraph(AMGraph g){
	printf("邻接矩阵为:\n");
	for(int i=0;i<g.vexnum;i++) {
		printf("  %d",g.vexs[i]);
	}
	printf("\n");
	for(int i=0;i<g.vexnum;i++){
		printf("%d ",g.vexs[i]);
		for(int j=0;j<g.vexnum;j++){
			if(g.arcs[i][j]==32767){
				printf("∞ "); 
			}else{
				printf("%d  ",g.arcs[i][j]);
			}	
		}
		printf("\n");
	} 
}
//Dijkstra算法,求单源最短路径
void Dijkstra(AMGraph g,int dist[],int path[],int v0){
	int n=g.vexnum,v;
	int set[n];//set数组用于记录该顶点是否归并 
	//第一步:初始化 
	for(int i=0;i<n;i++){
		set[i]=0;
		dist[i]=g.arcs[v0][i];
		if(dist[i]<MaxInt){//若距离小于MaxInt说明两点之间有路可通 
			path[i]=v0;//则更新路径i的前驱为v 
		}else{
			path[i]=-1; //表示这两点之间没有边
		 } 
	}
	set[v0]=1;//将初始顶点并入 
	path[v0]=-1;//初始顶点没有前驱
	
	//第二步 
	for(int i=1;i<n;i++){//共n-1个顶点 
		int min=MaxInt;
		//第二步:从i=1开始依次选一个距离顶点的最近顶点 
		for(int j=0;j<n;j++){
			if(set[j]==0&&dist[j]<min){
				v=j;
				min=dist[j];
		}
	}
	//将顶点并入 
	set[v]=1;	
	//第三步:在将新结点并入后,其初始顶点v0到各顶点的距离将会发生变化,所以需要更新dist[]数组
	for(int j=0;j<n;j++){
		if(set[j]==0&&dist[v]+g.arcs[v][j]<dist[j]){
			dist[j]=dist[v]+g.arcs[v][j];
			path[j]=v;
		}
	} 	
 } 
 //输出 
 printf("       ");
 for(int i=0;i<n;i++) printf("%d  ",i);
  
 printf("\ndist[]:");
 for(int i=0;i<n;i++) printf("%d  ",dist[i]);
 
 printf("\npath[]:");
 for(int i=0;i<n;i++) printf("%d  ",path[i]);

}

int main(){
	AMGraph g;
	createGraph(g);
	int dist[g.vexnum];
	int path[g.vexnum];
	Dijkstra(g,dist,path,0);
} 

Floyd算法:

求各顶点之间的最短路径,其时间复杂度为O(V*V*V)

如图所示,求<1,0>之间的最短路径:

代码实现:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include<stdio.h>
#include<stdlib.h>
#define MaxVexNum 50
#define MaxInt 32767
#define MaxEdgeNum 50
//邻接矩阵
typedef int VertexType;
typedef int EdgeType;
typedef struct AMGraph{
	VertexType vexs[MaxVexNum];//顶点表 
	EdgeType arcs[MaxVexNum][MaxVexNum];//邻接矩阵表 
	int vexnum,edgenum;//顶点数,边数 
}AMGraph; 

void createGraph(AMGraph &g){//创建无向图 
	printf("请输入顶点数:");
	scanf("%d",&g.vexnum);
	printf("\n请输入边数:");
	scanf("%d",&g.edgenum);
	
	//初始化顶点表 
	for(int i=0;i<g.vexnum;i++){
		g.vexs[i]=i; 
	} 
	for(int i=0;i<g.vexnum;i++){
		for(int j=0;j<g.vexnum;j++){
			g.arcs[i][j]=MaxInt;
			if(i==j) g.arcs[i][j]=0;
		}
	} 
	printf("请输入边的信息以及边的权值(顶点是0~n-1)\n");
	for(int i=0;i<g.edgenum;i++){
		int x,y,w;
		scanf("%d%d%d",&x,&y,&w);
		g.arcs[x][y]=w;
		//g.arcs[y][x]=w;
	}
}
void PrintGraph(AMGraph g){
	printf("邻接矩阵为:\n");
	for(int i=0;i<g.vexnum;i++) {
		printf("  %d",g.vexs[i]);
	}
	printf("\n");
	for(int i=0;i<g.vexnum;i++){
		printf("%d ",g.vexs[i]);
		for(int j=0;j<g.vexnum;j++){
			if(g.arcs[i][j]==32767){
				printf("∞ "); 
			}else{
				printf("%d  ",g.arcs[i][j]);
			}	
		}
		printf("\n");
	} 
}

//Floyd算法

//递归输出两个顶点直接最短路径 
void printPath(int u,int v,int path[][MaxVexNum]){
	if(path[u][v]==-1){
		printf("[%d %d] ",u,v);
	}else{
		int mid=path[u][v];
		printPath(u,mid,path);
		printPath(mid,v,path);
	}
}
void Floyd(AMGraph g,int path[][MaxVexNum]){
	int n=g.vexnum;
	int A[n][n];
	//第一步:初始化path[][]和A[][]数组 
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			A[i][j]=g.arcs[i][j];
			path[i][j]=-1; 
		}
	}
	//第二步:三重循环,寻找最短路径 
	for(int v=0;v<n;v++){//第一层是代表中间结点 
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				if(A[i][j]>A[i][v]+A[v][j]){
					A[i][j]=A[i][v]+A[v][j];
					path[i][j]=v;
				}
			}
		} 
	} 
} 
 
int main(){
	AMGraph g;
	createGraph(g);
	PrintGraph(g);
	int path[MaxVexNum][MaxVexNum];
	Floyd(g,path);

	printPath(1,0,path);
} 

代码运行截图:

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/152181.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
迪杰斯特拉(Dijkstra)算法求图中最短路径
迪杰斯特拉(Dijkstra )算法: 对于图G=(V,E),将图的顶点分为两组: 顶点集S:已求出的最短路径的顶点集合(初始为{v0}); 顶点集V-S:尚未求出最短路径的顶点集合(初始为V-{v0} )。 算法按最短路径长度的递增顺序逐个将V-S的顶点加入S中,直到所有顶点均被加入S为止。 算法需借助辅助数组dist[N], dist[i]表示目前已经找到的、从开始点v0到终点vi的当前最短路径的长度。 dist各元素的初值:若从v0到vi存在弧,则dist[i]为弧上
Steve Wang
2018/02/05
1K0
Dijkstra算法原理及实现
持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第21天,点击查看活动详情
鳄鱼儿
2024/05/22
1360
Dijkstra算法原理及实现
图的应用——最短路径
方法一:每次以一个顶点为源点,重复执行Dijkstra算法n次—— T(n)=O(n³)
ruochen
2021/07/02
5020
图的应用——最短路径
弗洛伊德(Floyd)算法
弗洛伊德(Floyd)算法求图中两点的最短路径 佛罗依德(Floyd )算法的基本思想: 设图g用邻接矩阵法表示,求图g中任意一对顶点vi与vj间的的最短路径。 (-1)将vi到vj的最短的路径长度初始化为g.arcs[i][j].adj,进行如下n次比较和修正: (0)在vi与vj间加入顶点v0,比较(vi, v0, vj )和(vi, vj)的路径的长度,取其中较短的路径作为vi到vj的且中间顶点编号不大于0的最短路径。 (1)在vi与vj间加入顶点v1,得(vi,…, v1 )
Steve Wang
2018/02/05
8580
期末复习之数据结构 第7章 图
含有n个顶点的无向完全图有多少条边? n×(n-1)/2条边 含有n个顶点的有向完全图有多少条弧? n×(n-1)条边
henu_Newxc03
2021/12/28
6620
期末复习之数据结构 第7章 图
详解BFS,Dijkstra算法,Floyd算法是如何解决最短路径问题的
G纲是个物流离散中心,经常需要往各个城市运东西,怎么运送距离最近——单源最短路径问题
莫浅子
2022/12/09
2.2K0
详解BFS,Dijkstra算法,Floyd算法是如何解决最短路径问题的
深入解析最短路径算法
转载自:http://blog.csdn.net/fengchaokobe/article/details/7478774
全栈程序员站长
2022/09/05
6770
Dijkstra算法和Floyed算法「建议收藏」
在非网图中,最短路径是指两顶点之间经历的边数最少的路径。 在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径。
全栈程序员站长
2022/07/04
5060
弗洛伊德(Floyd)算法求图的最短路径「建议收藏」
弗洛伊德算法作为求最短路径的经典算法,其算法实现相比迪杰斯特拉等算法是非常优雅的,可读性和理解都非常好。
全栈程序员站长
2022/09/05
4650
各种基本算法实现小结(四)—— 图及其遍历
====================================================================
阳光岛主
2019/02/20
5150
最短路径问题—Floyd算法详解[通俗易懂]
前言 Genius only means hard-working all one’s life. Name:Willam Time:2017/3/8
全栈程序员站长
2022/09/05
2.9K0
单源最短路径
 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。 一.最短路径的最优子结构性质    该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。    假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P
用户1154259
2018/01/17
8320
图的应用详解-数据结构
关键路径——在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度,路径长度最长的路径叫做关键路径(Critical Path)。
黄规速
2022/04/14
6520
图的应用详解-数据结构
单源最短路径算法[通俗易懂]
最短路径问题:如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小。当然这只是最基础的应用,关于单源最短路径还有很多变体:
全栈程序员站长
2022/09/01
1.9K0
单源最短路径算法[通俗易懂]
【河北大学数据结构大作业】
版权声明:本文为博主原创文章,遵循 CC 4.0 BY 版权协议,转载请附上原文出处链接和本声明。
韩旭051
2019/12/03
5640
算法:最短路径之弗洛伊德(Floyd)算法
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例。图7-7-12的左图是一个简单的3个顶点的连通网图。 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点
s1mba
2018/01/03
3.6K0
算法:最短路径之弗洛伊德(Floyd)算法
图的存储结构
废话不多说,上来撸干货。 我们知道,实现图共有两种常用的方法:邻接矩阵、邻接表法。接下来我们就来一一介绍这两种方法。 实际上,图的存储结构有些复杂,为了方便读者理解,也为了方便笔者的写作,这部分的篇幅会长一些,稍有些啰嗦,还望见谅。
roobtyan
2019/02/21
1.1K0
图的存储结构
最短路径——Dijkstra算法与Floyd算法
最短路径问题最短路径问题是我们经常会面临的一种决策问题。在图论中,非网图(边没有权值)的最短路径就是两个顶点之间经过边数最少的路径。对于网来说,由于每条边都有权值,所谓的最短路径是指,两个顶点之间经过的边加权之后的和最小。路径上的第一个顶点称为源点,最后一个顶点称为终点。求最短路径的经典算法有Dijkstra算法和Floyd算法。
mindtechnist
2024/08/08
1820
最短路径——Dijkstra算法与Floyd算法
最短路径dijkstra,floyd
给定一个带权有向图G=(V,E),其中每条边的权是一个实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到其他所有各顶点的最短路径长度。这里的长度就是指路上各边权之和。这个问题通常称为单源最短路径 [1] 问题。
废江_小江
2022/09/05
6520
图的深度优先和广度优先算法(DFS递归与非递归)
阅读本文前,可以先参考本博客 各种基本算法实现小结(四)—— 图及其遍历   和  图的一些基本算法
阳光岛主
2019/02/20
1.9K0
相关推荐
迪杰斯特拉(Dijkstra)算法求图中最短路径
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验