前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >美美的圣诞树画出来-CoCube

美美的圣诞树画出来-CoCube

作者头像
zhangrelay
发布2023-01-01 11:05:11
4550
发布2023-01-01 11:05:11
举报

2022年圣诞节到来啦,很高兴这次我们又能一起度过~ CSDN诚邀各位技术er分享关于圣诞节的各种技术创意,展现你与众不同的精彩!参与本次投稿即可获得【话题达人】勋章+【圣诞快乐】定制勋章(1年1次,错过要等下一年喔)! 你可以从以下几个方面着手(不强制),或者根据自己对话题主题的理解创作,参考如下:

提醒:在发布作品前请把不用的内容删掉

本可以蓝桥ROS云课复现,后续补充。

一组cocube绘制圣诞树

之前,有绘制各类优美曲线的博客,但是一个机器人绘制效率肯定是有限的,那么一组机器人效果一定就是倍数关系啦。

优美的曲线(含蝴蝶线)-CoCube

如何将数学曲线变为机器人轨迹-花式show爱心代码-turtlesim篇

一、前言

提示:可简单介绍此次创意背景。

Turtlesim修改为CoCube,使用sketch工具包绘制出圣诞树。

需要用到的功能包:

  • turtlesim
  • sketch 

二、创意名

提示:可介绍本篇文章要实现的圣诞节相关技术创意。

绘制各类圣诞树随心所欲哦。

这个功能包有个啥子小问题呢。

就是绘制过程中,各个小机器人分配任务不均衡。

经常出现一人绘制,万人围观的场面呢。

只剩一个绘制了。

绘制完成后。

三、效果展示

提示:可展示本篇文章要实现的圣诞节相关技术创意最终效果。

需要绘制的圣诞树越复杂需要的机器人数量越多。

一号圣诞树:

二号圣诞树:

换个颜色:

完成后:

四、实现步骤

提示:可详细介绍实现相关创意的操作步骤。

需要ROS+Turtlesim+Sketch。

配置好Project: Turtle-Sketch。

在终端输入:

roslaunch sketch sketcher.launch

代码语言:javascript
复制
ros@ros:~/RobCode/sketch$ roslaunch sketch sketcher.launch 
... logging to /home/ros/.ros/log/0c537ad0-890a-11ed-a964-4789d50e4dcc/roslaunch-ros-278770.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://ros:34897/

SUMMARY
========

PARAMETERS
 * /rosdistro: noetic
 * /rosversion: 1.15.15

NODES
  /
    CannyThresholding (image_thresholding/server.py)
    ImagePath (image_thresholding/import_server.py)
    Sketch (sketch/sketcher.py)
    rqt_reconfigure (rqt_reconfigure/rqt_reconfigure)
    sim (turtlesim/turtlesim_node)

auto-starting new master
process[master]: started with pid [278778]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to 0c537ad0-890a-11ed-a964-4789d50e4dcc
process[rosout-1]: started with pid [278788]
started core service [/rosout]
process[rqt_reconfigure-2]: started with pid [278791]
process[CannyThresholding-3]: started with pid [278792]
process[ImagePath-4]: started with pid [278797]
process[sim-5]: started with pid [278798]
process[Sketch-6]: started with pid [278799]
Max =  120 	Min =  50
[INFO] [1672491199.756063]: Address selected
[INFO] [1672491199.760637]: Image Loaded
[INFO] [1672491199.761917]: Select minimum and maximum threshold
Max =  120 	Min =  50
[INFO] [1672491203.376289]: Spawning an army of turtles to sketch your image
[INFO] [1672491205.530128]: Sketching ....
[INFO] [1672491292.705367]: Press Ctrl+C to terminate the program

导入具体圣诞树图片:

/home/ros/RobCode/sketch/src/sketch/scripts/c1.jpeg

等待绘制完成即可。

五、编码实现

提示:可详细展示实现相关创意的代码。

绘制核心代码Python版本。

具体可参考:

Program to sketch the contours in a turtle-sim Author: Shilpaj Bhalerao Date: Aug 30, 2020

代码语言:javascript
复制
#!/usr/bin/env python3.8
"""
Program to sketch the contours in a turtle-sim
Author: Shilpaj Bhalerao
Date: Aug 30, 2020
"""

import rospy
import numpy as np
import math
import sys
import time
import multiprocessing
import cv2
import matplotlib.pyplot as plt
from geometry_msgs.msg import Twist
from turtlesim.msg import Pose
from turtlesim.srv import *
from std_srvs.srv import Empty
from Turtle import *
# from sketch.msg import points, groups, segments
# from sketch.srv import test
import itertools

INTERNAL = False


class Robot:
    def __init__(self, parallel=1):
        self.count = 1
        self.list = []
        self.processes = []
        self.PARALLEL = parallel
        self.start = False
        self.image = None
        self.activate = True
        self.draw_contour = False

        # Variables to access contours data
        self.collection_points = []
        self.collection_segments = []
        self.collection_groups = []

        # Initialize sketcher node
        rospy.init_node('sketcher', anonymous=False)

        # Publisher
        self.pub = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)

        # Subscriber
        # rospy.Subscriber('contours', segments, self.callback)

        # Rate to control frequency of operation of node
        self.rate = rospy.Rate(1)  # 10hz

        # Reset the turtle-sim simulator
        reset_sim()

        time.sleep(2)  # Delay to make sure dynamic reconfigure is ready

        while not rospy.is_shutdown():
            if INTERNAL:  # Test the code without the data exchange from outside node
                center = [5.54, 5.54]
                origin = [4.0, 4.0]
                l_top = [4.0, 9.0]
                r_top = [9.0, 9.0]
                l_bottom = [4.0, 4.0]
                r_bottom = [9.0, 4.0]

                self.start = True
                self.contours = [[(1, 1), (4, 2), (3, 3,), (4, 9), origin],
                                 [(9, 1), (1, 2), (1, 3,), (9, 9), (9, 4), origin],
                                 [center, l_top, r_top, r_bottom, l_bottom, center]]
                self.numbers = len(self.contours)

            elif not INTERNAL:  # Test the code with other nodes data
                # Wait for user to select image from a path or capture an image using camera
                if self.activate and not self.draw_contour:
                    self.load_img()

                # After selecting image, start drawing contours and adjust the threshold
                if self.activate and rospy.get_param('ImagePath/Capture'):
                    self.find_contours()

            # After finalizing contours, spawn an army of turtles and start sketching
            if self.start:
                # Spawn turtle at the first point of the contours
                self.spawn_source()

                if self.PARALLEL == 0:  # If sequential implementation mode is selected
                    self.trace()
                elif self.PARALLEL == 1:  # If parallel implementation mode is selected
                    rospy.loginfo("Sketching ....")

                    # Code for Multi-processing
                    for i in range(self.numbers):
                        p = multiprocessing.Process(target=self.trace_parallel, args=[i])
                        p.start()
                        self.processes.append(p)
                    for process in self.processes:
                        process.join()

                # Remove the turtles after sketching is done
                self.kill_destination()
                rospy.loginfo("Press Ctrl+C to terminate the program")
                rospy.spin()
            else:
                pass

    # ------------------------------- Functions related to image processing ----------------------------
    def load_img(self):
        """
        Load image using either:
        - Path of an image
        - Using a camera
        """
        while self.image is None:
            types = rospy.get_param('ImagePath/CaptureType')  # Check either camera or path is selected

            # If image path is selected
            if types == 0:
                image_path = rospy.get_param('ImagePath/img_path')  # Read the path
                self.image = cv2.imread(image_path)  # Load an image from the path

                # If image is loaded properly, start finding edges
                if self.image is not None:
                    rospy.loginfo("Address selected")
                    self.draw_contour = True
                    break

            # If camera is selected
            elif types == 1:
                cap = cv2.VideoCapture(0)
                while True:
                    # Check if frame is selected
                    condition = rospy.get_param('ImagePath/Capture')

                    # Capture frame-by-frame
                    ret, frame = cap.read()

                    # Display the resulting frame
                    cv2.imshow('Capture Image to Sketch', frame)
                    cv2.waitKey(1)

                    # If frame is selected properly, start finding edges
                    if condition:
                        self.image = frame
                        cv2.destroyWindow('Capture Image to Sketch')
                        self.draw_contour = True
                        break

        # Resize image since turtle-sim dimensions are 500 x 500
        self.image = cv2.resize(self.image, (500, 500))
        rospy.loginfo("Image Loaded")
        rospy.loginfo("Select minimum and maximum threshold")

    def find_contours(self):
        """
        Find edges and contours in an image
        """
        # Grayscale
        gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)

        # Find Canny edges using threshold inputs
        gains = rospy.get_param('/Thresholds')
        min_val = gains[0]
        max_val = gains[1]
        edged = cv2.Canny(gray, min_val, max_val)

        cv2.imshow("Select Threshold Values", edged)
        cv2.waitKey(1)

        # If edges are selected, start drawing sketch
        start = rospy.get_param('/Activate')

        if start:
            # Find contours
            contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

            # Convert contours to accessible data format
            self.contour_to_accessible_format(contours)

            # Draw all contours on a blank image
            blank = np.zeros(shape=[500, 500, 3], dtype=np.uint8)
            cv2.drawContours(blank, contours, -1, (255, 255, 255), 1)

    def contour_to_accessible_format(self, contours):
        """
        Function to convert the opencv contours to accessible data format
        - Collection of x,y coordinates is a point
        - Collection of points is a segment
        - Collection of segments is a group
        - Collection of groups is a contour
        :param contours: Extracted contours from the image
        :type contours: opencv contours
        """
        for i in range(len(contours)):  # For all the contours
            if len(contours[i]) > 10:  # If they have more than 10 points
                for j in range(len(contours[i])):  # Find the x,y coordinates of all the points
                    x_cord = (contours[i][j][0][0] * 11) / 500  # Convert points within (11, 11) i.e. size of turtle-sim
                    y_cord = (contours[i][j][0][1] * 11) / 500

                    # Save these coordinates in a list named collection_points and subtract y from 11 to make upright
                    # image
                    self.collection_points.append((x_cord, 11.0 - y_cord))

                # Collect all line segments in collection_segments list
                self.collection_segments.append(self.collection_points)
                self.collection_points = []

            # Collect all groups in collection_groups list
            self.collection_groups.append(self.collection_segments)

        # Collection of all contours in contours
        self.contours = self.collection_segments

        # Total number of contours
        self.numbers = len(self.contours)

        # Reset and code flow
        self.collection_segments = []
        self.activate = False
        self.start = True

    # ------------------------------- Functions related to sketching turtle path ----------------------------
    def trace_parallel(self, j):
        """
        Function to trace the contours using multi-processing
        :param j: Number of multi-processes
        :type j: Int
        """
        # Take x,y coord. of next point in contour and teleport turtle to that point(for all contours simultaneously)
        for k in range(len(self.contours[j])):
            self.list[j].teleport(self.contours[j][k][0], self.contours[j][k][1], 0.0)

    def trace(self):
        """
        Function to trace the contours using sequential programming
        """
        # Take x,y coord. of next point in contour and teleport turtle to that point(for one contour at a time)
        for j in range(self.numbers):
            for k in range(len(self.contours[j])):
                self.list[j].teleport(self.contours[j][k][0], self.contours[j][k][1], 0.0)

    # ------------------------------- Functions related to turtle actions ----------------------------
    def spawn_source(self):
        """
        Spawn multiple turtles on the first point of each contour
        """
        rospy.loginfo("Spawning an army of turtles to sketch your image")
        for i in range(self.numbers):
            self.list.append(Turtle(i + 1))
            if i == 0:
                self.list[0].set_pen(0)
                self.list[0].teleport(self.contours[i][0][0], self.contours[i][0][1], 0.0)
                self.list[0].set_pen(1)
            else:
                self.list[i].spawn(self.contours[i][0][0], self.contours[i][0][1], 0.0)

    def kill_destination(self):
        """
        Remove the turtles from simulation at the end of sketching
        """
        for i in range(self.numbers):
            self.list[i].kill_turtle()


def reset_sim():
    """
    Function to reset the simulator
    """
    try:
        reset_serv = rospy.ServiceProxy('/reset', Empty)
        reset_serv()
    except rospy.ServiceException as e:
        rospy.loginfo("Service execution failed: %s" + str(e))


if __name__ == '__main__':
    try:
        turtle = Robot(int(sys.argv[1]))
    except KeyboardInterrupt:
        exit()

原作品机器翻译如下:

#项目:海龟素描

##概述

-在这个项目中,左边的图像作为输入,右边的图像作为输出,使用turtlesim

-左侧的图像可以使用其路径选择,也可以直接从相机拍摄

-以下视频显示了该项目的实际情况

---

##使用的概念

以下是本项目使用的概念:

-**动态重新配置**

-使用路径导入图像

-使用相机导入图像

-设置Canny边缘检测的阈值

-**ROS参数**

-设置阈值参数的值

-获取阈值参数的值

-**ROS服务**

-产卵海龟

-传送海龟

-将笔的状态设置为-ON/OFF

-完成草图后移除海龟

-**OpenCV**

-导入图像的步骤

-使用Canny边缘检测查找边缘

-查找轮廓的步骤

-**多处理**

-为了画草图而生下一群海龟

---

##目录结构

-该目录包含3个包:

-“草图`

-`动态重新配置`

-`image_thresholding`

-草图目录结构

```

├── CMakeLists.txt

├── docs # Supported files for documentation

│ ├── Contours.png

│ ├── done.png

│ ├── dynamic reconfigure.png

│ ├── edges.png

│ ├── Output.png

│ ├── rosgraph.png

│ ├── test.png

│ └── turtles.png

├── include

│ └── sketch

├── launch # Launch Files

│ └── sketcher.launch

├── package.xml

├── README.md

├── nodes # ROS Nodes

│ ├── ironman.jpeg

│ ├── sketcher.py

│ └── Turtle.py

└── TODO.md # TO DO for next version

```

-Image_thresholding目录结构

```

.

├── cfg # Configuration file for GUI

│ ├── import.cfg # GUI params related to image import

│ └── thresholds.cfg # GUI params related to image thresholding

├── CMakeLists.txt

├── include

│ └── dynamic_parameters

├── launch # Launch files

│ └── canny_thresholding.launch # Launch - GUI for Canny edge detection

├── nodes # ROS Nodes

│ ├── get_values.py

│ ├── import_server.py # Import Image import parameters in python node

│ └── server.py # Import thresholding parameters in python node

└── package.xml

```

---

##编码风格指南-PEP8

---

##依赖关系

-“动态重新配置”包

-`OpenCV`

---

##安装和运行

要在本地系统上运行项目,请执行以下步骤:

-下载软件包“sketch”、“image_thresholding”和“dynamic-reconfigure noetic-devel”`

-将这些包复制到ROS工作区,即`~/ROS_ws/src/`

-构建工作区

-`$cd~/ROS_ws/`

-`$catkin_make`

-打开新终端并获取ROS工作区的源代码-`source~/ROS_ws/devel/setup.bash`

-运行命令-`$roslaunch sketcher.raunch`

-此命令将打开此项目的turtlesim和GUI

![](./sketch/docs/test.png)

![](./sketch/docs/dynamic_reconfig.png)

-您可以为`CaptureType选择图像**地址(0)**或**照相机(1)**选项`

-如果选择*Address(0)*,请在“img_path”部分中插入系统上图像的路径

-然后单击`Capture前面的复选框`

-如果您选择*照相机(0)*,照相机窗口将弹出,您可以在获得所需帧后单击“捕获”前面的复选框

-这将打开一个窗口,其中包含选定帧中的边

![](./sketch/docs/edges.png)

-现在,使用GUI设置最小和最大阈值以获得所需的轮廓

-单击“开始”前面的复选框,产生一支海龟大军,它将为您绘制这些轮廓

![](./sketch/docs/turtles.png)

-草图完成后,海龟会消失

![](./sketch/docs/done.png)

**注:**

-如果要将方法从并行更改为顺序,请执行以下步骤:

1.在此目录中打开启动文件`~/ROS_ws/sketch/launch/`

2.sketcher节点的“arg”标记的值为1

3.将此值更改为`0`

-这里,0=顺序执行,1=并行执行


可扩展部分:

#要执行的操作: 参考-turtle_actionlib ##项目1:绘制等高线 ##下一版本的任务 -[]为等高线数据传输创建自定义消息 -[]在主题上传输等高线数据 -[]通过服务传输等高线数据 -[]使用ROS参数传输等高线数据 -[]添加加权原始图像,为GitHub配置文件创建一个漂亮的.gif文件 -[]使用GUI窗口上的按钮 -[]创建插件 -[]SRS文件 -[]编码结构图 -[x]导入图像 -[x]查找轮廓 -[x]在代码中添加自定义阈值 -[x]使用套头衫绘制芋头 -[x]将乌龟从一点移动到另一点 -[x]繁殖多只海龟 -[x]将繁殖的海龟传送到轮廓的第一个点 -[x]顺序轮廓绘制 -[x]同时绘制多个轮廓的多重处理 -[x]用于捕获图像或加载图像并显示输出的GUI -[x]使用ROS1 Noetic -[]用于生产的ROS2端口 -[]遵循编码样式 -[]创建文档 -[]优化代码 -[]使用PyCUDA在GPU上运行代码 -[x]文档 -依赖关系 -环境文件 -[]包装和出版 -[]日志记录模块 -[x]README文件 -[]包括使用的概念和与概念的良好资源链接 --- ##项目2:如果可以,请抓住我 -[]动议 -[]动态配置 -[]PID的自定义消息 -[x]用于精确控制的PID控制器类代码 -[]实现PID调节的动态重新配置 --- ##项目3: -[]TF合作伙伴 -[]在turtlesim中创建另一个坐标系 -[]将海龟移到某个位置,并显示相对于另一个原点的坐标


提醒:在发布作品前请把不用的内容删掉

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2022-12-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、前言
  • 二、创意名
  • 三、效果展示
  • 四、实现步骤
  • 五、编码实现
相关产品与服务
机器翻译
机器翻译(Tencent Machine Translation,TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档