前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >AI大模型落地不远了!首个全量化Vision Transformer的方法FQ-ViT(附源代码)

AI大模型落地不远了!首个全量化Vision Transformer的方法FQ-ViT(附源代码)

作者头像
计算机视觉研究院
发布2023-08-24 08:38:56
4730
发布2023-08-24 08:38:56
举报
文章被收录于专栏:计算机视觉战队

论文地址:https://arxiv.org/pdf/2111.13824.pdf

项目代码:https://github.com/megvii-research/FQ-ViT

计算机视觉研究院专栏

Column of Computer Vision Institute

将算法网络进行量化和模型转换可以显着降低模型推理的复杂性,并在实际部署中得到了广泛的应用。然而,大多数现有的量化方法主要是针对卷积神经网络开发的,并且在完全量化的vision Transformer上应用时会出现严重的掉点。今天我们就分享一个新技术,实现高精度量化的Vit部署。AI大模型落地使用离我们还远吗?

01

总 述

Transformer 是现在火热的AIGC预训练大模型的基础,而ViT(Vision Transformer)是真正意义上将自然语言处理领域的Transformer带到了视觉领域。从Transformer的发展历程就可以看出,从Transformer的提出到将Transformer应用到视觉,其实中间蛰伏了三年的时间。而从将Transformer应用到视觉领域(ViT)到AIGC的火爆也差不多用了两三年。其实AIGC的火爆,从2022年下旬就开始有一些苗条,那时就逐渐有一些AIGC好玩的算法放出来,而到现在,AIGC好玩的项目真是层出不穷。

随着近两年来对视觉Transformer模型(ViT)的深入研究,ViT的表达能力不断提升,并已经在大部分视觉基础任务 (分类,检测,分割等) 上实现了大幅度的性能突破。然而,很多实际应用场景对模型实时推理的能力要求较高,但大部分轻量化ViT仍无法在多个部署场景 (GPU,CPU,ONNX,移动端等)达到与轻量级CNN(如MobileNet) 相媲美的速度。

因此,重新审视了ViT的2个专属模块,并发现了退化原因如下:

  • 研究者发现LayerNorm输入的通道间变化严重,有些通道范围甚至超过中值的40倍。传统方法无法处理如此大的激活波动,这将导致很大的量化误差
  • 还发现注意力图的值具有极端的不均匀分布,大多数值聚集在0~0.01之间,少数高注意力值接近1

基于以上分析,研究者提出了Power-of-Two Factor(PTF)来量化LayerNorm的输入。通过这种方式,量化误差大大降低,并且由于Bit-Shift算子,整体计算效率与分层量化的计算效率相同。此外还提出了Log Int Softmax(LIS),它为小值提供了更高的量化分辨率,并为Softmax提供了更有效的整数推理。结合这些方法,本文首次实现了全量化Vision Transformer的训练后量化。

02

新框架

下面的这两张图表明,与CNN相比,视觉转换器中存在严重的通道间变化,这导致了分层量化的不可接受的量化误差。

首先解释网络量化符号。假设量化位宽为b,量化器Q(X|b)可以公式化为将浮点数X∈R映射到最近量化仓的函数:

Uniform Quantization

Uniform Quantization在大多数硬件平台上都得到了很好的支持。它的量化器Q(X|b)可以定义为:

其中s(标度)和zp(零点)是由X的下界l和上界u确定的量化参数,它们通常是最小值和最大值。

Log2 Quantization

Log2 Quantization将量化过程从线性变化转换为指数变化。其量化器Q(X|b)可定义为:

为了实现完全量化的视觉变换器,研究者对所有模块进行量化,包括Conv、Linear、MatMul、LayerNorm、Softmax等。特别是,对Conv、线性和MatMul模块使用均匀的Min-Max量化,对LayerNor和Softmax使用以下方法。

Power-of-Two Factor for LayerNorm Quantization

在推理过程中,LayerNorm计算每个正向步骤中的统计量µX,σX,并对输入X进行归一化。然后,仿射参数γ,β将归一化输入重新缩放为另一个学习分布。

如刚开始解释分析一样,与神经网络中常用的BatchNorm不同,LayerNorm由于其动态计算特性,无法折叠到前一层,因此必须单独量化它。然而,在对其应用训练后量化时观察到显著的性能下降。查看LayerNorm层的输入,发现存在严重的通道间变化。

研究者提出了一种简单而有效的层范数量化方法,即Power-of-Two Factor(PTF)。PTF的核心思想是为不同的信道配备不同的因子,而不是不同的量化参数。给定量化位宽b,输入活动X∈RB×L×C,逐层量化参数s,zp∈R1,以及PTFα∈NC,则量化活动XQ可以公式化为:

其中部分参数如下:

Softmax quantized with Log-Int-Softmax (LIS)

注意图的存储和计算是变压器结构的瓶颈,因此研究者希望将其量化到极低的位宽(例如4位)。然而,如果直接实现4位均匀量化,则会出现严重的精度退化。研究者观察到分布集中在Softmax输出的一个相当小的值上,而只有少数异常值具有接近1的较大值。基于以下可视化,对于具有密集分布的小值区间,Log2保留了比均匀更多的量化区间。

将Log2量化与i-exp(i-BERT提出的指数函数的多项式近似)相结合,提出了LIS,这是一个仅整数、更快、低功耗的Softmax。

整个过程如下所示。

03

实验&可视化

Comparison of the top-1 accuracy with state-of-the-art methods on ImageNet dataset

将注意力图可视化,以查看均匀量化和LIS之间的差异,如上图所示。当两者都使用8位时,均匀量化集中在高激活区域,而LIS在低激活区域保留更多纹理,这保留了注意力图的更多相对秩。在8位的情况下,这种差异不会产生太大的差异。然而,当量化到较低的位宽时,如6位和4位的情况所示,均匀量化会急剧退化,甚至使所有关注区域失效。相反,LIS仍然表现出类似于8位的可接受性能。

Channel-wise minimum and maximum values of Vision Transformers and ResNets

转载请联系本公众号获得授权

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-06-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 计算机视觉战队 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Uniform Quantization
  • Softmax quantized with Log-Int-Softmax (LIS)
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档