最近搞到了datawhale的内部资料,学习的同时也来分享一波
首先在加载数据集的时候就报错了:
https://github.com/kimiyoung/planetoid/
raw/master/data/ind.cora.x进行下载Core数据集,
但是没有蹄 子打不开下载不了
出现“TimeoutError: [WinError 10060] 由于连接方
在一段时间后没有正确答复或连接的主机没有反应,连接
尝试失败。”这种错误。
所以我们需要手动的下载数据集,并且解压放到对应的文件夹下:
首先给大家先放上加载数据集的代码:
from torch_geometric.datasets import Planetoid
import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
dataset = Planetoid(root='D:/data/', name='Cora')
print(dataset)
打印一下数据集的一些属性:
from torch_geometric.datasets import Planetoid
import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
from torch_geometric.transforms import NormalizeFeatures
dataset = Planetoid(root='D:/data/', name='Cora',transform=NormalizeFeatures())
print()
print(f"Dataset: {dataset}")
print("========")
print(f"Number of graphs:{len(dataset)}")
print(f"Number of features:{dataset.num_features}")
print(f'Number of classes: {dataset.num_classes}')
data = dataset[0] # Get the first graph object.
print()
print(data)
print('======================')
# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges /data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) /data.num_nodes:.2f}')
print(f'Contains isolated nodes:{data.contains_isolated_nodes()}')
print(f'Contains self-loops: {data.contains_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')
输出结果:
学习资料中是这样介绍的:
然后使用一个简单的MLP神经网络来看看效果怎样:
class MLP(torch.nn.Module):
def __init__(self, hidden_channels):
super(MLP, self).__init__()
torch.manual_seed(12345)
self.lin1 = Linear(dataset.num_features, hidden_channels)
self.lin2 = Linear(hidden_channels, dataset.num_classes)
def forward(self, x):
x = self.lin1(x)
x = x.relu()
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin2(x)
return x
model = MLP(hidden_channels=16)
print(model)
model = MLP(hidden_channels=16)
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01,weight_decay=5e-4) # Define optimizer.
def train():
model.train()
optimizer.zero_grad() # Clear gradients.
out = model(data.x) # Perform a single forward pass.
loss = criterion(out[data.train_mask],data.y[data.train_mask]) # Compute the loss solely based on the
loss.backward() # Derive gradients.
optimizer.step() # Update parameters based on gradients.
return loss
for epoch in range(1, 201):
loss = train()
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')
def test():
model.eval()
out = model(data.x)
pred = out.argmax(dim=1) # Use the class with highest probability.
test_correct = pred[data.test_mask] == data.y[data.test_mask]
# Check against ground-truth labels.
test_acc = int(test_correct.sum()) / int(data.test_mask.sum())
# Derive ratio of correct predictions.
return test_acc
输出:
正如我们看到的,效果很差,一个重要的原因就是有标签的节点数量过少,训练的时候会有一些过拟合
接下来我们介绍图卷积神经网络:
然后开始构建我们的图神经网络:
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):
def __init__(self, hidden_channels):
super(GCN, self).__init__()
torch.manual_seed(12345)
self.conv1 = GCNConv(dataset.num_features,
hidden_channels)
self.conv2 = GCNConv(hidden_channels, dataset.num_classes)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = x.relu()
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv2(x, edge_index)
return x
然后可视化由未经过训练的GCN图神经网络生成的节点表征:
通过visualize的函数处理,7维特征的节点被映射到2维的平面上,可以看到有点“同类节点群聚”的现象
接下来,构建我们的图神经网络:
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):
def __init__(self, hidden_channels):
super(GCN, self).__init__()
torch.manual_seed(12345)
self.conv1 = GCNConv(dataset.num_features,
hidden_channels)
self.conv2 = GCNConv(hidden_channels, dataset.num_classes)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = x.relu()
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv2(x, edge_index)
return x
model = GCN(hidden_channels=16)
print("图神经网络:")
print(model)
model.eval()
out=model(data.x,data.edge_index)
visualize(out,color=data.y)
model = GCN(hidden_channels=16)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01,weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()
def train():
model.train()
optimizer.zero_grad() # Clear gradients.
out = model(data.x, data.edge_index) # Perform a singleforward pass.
loss = criterion(out[data.train_mask],
data.y[data.train_mask]) # Compute the loss solely based on thetraining nodes.
loss.backward() # Derive gradients.
optimizer.step() # Update parameters based on gradients.
return loss
for epoch in range(1, 201):
loss = train()
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')
def test():
model.eval()
out=model(data.x,data.edge_index)
pred=out.argmax(dim=1)
test_correct=pred[data.test_mask]==data.y[data.test_mask]
test_acc=int(test_correct.sum())/int(data.test_mask.sum())
return test_acc
test_acc=test()
print(f"Test Accuracy:{test_acc:.4f}")
输出:
可以看到准确率已经提高到了80%,与前面获得59%的测准确率的MLP图神经网络相比,GCN图神经网络准确性要高的多,这表明节点的邻接信息再取得更好的准确率方面起着更关键的作用。
再来做个图看看吧:
通过上面这个图发现,同类节点群聚的现象更加明显了,这意味着在训练后,GCN图神经网络生成的节点表征质量更高了。
完