前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >AI Earth ——开发者模式案例4:浙江省森林区域植被生长分析

AI Earth ——开发者模式案例4:浙江省森林区域植被生长分析

作者头像
此星光明
发布2024-02-02 10:14:17
1520
发布2024-02-02 10:14:17
举报

浙江省森林区域植被生长分析

利用 Modis MCD12Q1 地物分类数据产品和 MODIS MOD13Q1 16天标准植被指数产品。通过对 20218 月植被指数最大值与近 3 年同期指数 8 月最大值的 3 年均值进行对比,实现对浙江省森林区域植被的空间监测。

初始化环境
代码语言:javascript
复制
import aie

aie.Authenticate()
aie.Initialize()
定义矢量区域
代码语言:javascript
复制
region = aie.FeatureCollection('China_Province') \
            .filter(aie.Filter.eq('province', '浙江省')) \
            .geometry()

map = aie.Map(
    center=region.getCenter(),
    height=800,
    zoom=5
)

vis_params = {
    'color': '#00FF00'
}
map.addLayer(
    region,
    vis_params,
    'region',
    bounds=region.getBounds()
)
map
获取森林区域掩膜

引用 Modis MCD12Q1 地物分类数据产品,其中 LC_Type1 中数值 1-5 为不同类型的森林植被,通过 aie.Image.lt 实现 2020 年森林植被覆盖地区提取。并将提取到的数据进行地图可视化显示。

代码语言:javascript
复制
LC_Dataset = aie.ImageCollection('MODIS_MCD12Q1_006') \
                .filterDate('2020-05-01', '2020-05-31')
imgs = LC_Dataset.select(['LC_Type1']).first().clip(region)

forest = imgs.lt(aie.Image.constant(6))   # Modis MCD12Q1 1-5为不同类型的森林

vis_params = {
    'bands': 'LC_Type1',
    'min': 1,
    'max': 17,
    'palette': [ 
        '#05450a', '#086a10', '#54a708', '#78d203', '#009900', '#c6b044', 
        '#dcd159', '#dade48', '#fbff13', '#b6ff05', '#27ff87', '#c24f44', 
        '#a5a5a5', '#ff6d4c', '#69fff8', '#f9ffa4', '#1c0dff'
    ]
}

forest_vis = {
    'bands': 'LC_Type1',
    'min': 0,
    'max': 1,
    'palette': [ 
        '#ffffff', '#4fb104'
    ]
}

map.addLayer(
    imgs,
    vis_params,
    'LC_data',
    bounds=region.getBounds()
)

map.addLayer(
    forest,
    forest_vis,
    'Forest',
    bounds=region.getBounds()
)
map
植被生长对比

使用 MODIS MOD13Q1 16天标准植被指数产品,利用 aie.ImageCollection.max 获得 2018、2019、2020年、2021 年逐年 8NDVI 最大值,并计算 2018-20203 年的均值( aie.ImageCollection.mean ),对比 2021 年与过去3年同期均值的比较,应用 updateMask 函数进行森林地区掩膜,确定 2021 年浙江森林植被生长状态。并将最终成果进行地图可视化显示。

代码语言:javascript
复制
ndvi_vis  = {
    'bands': 'NDVI',
    'min': 0,
    'max': 8000,
    'palette': [ 
        '#FFFFFF', '#CE7E45', '#DF923D', '#F1B555', '#FCD163', '#99B718',
        '#74A901', '#66A000', '#529400', '#3E8601', '#207401', '#056201',
        '#004C00', '#023B01', '#012E01', '#011D01', '#011301'
    ]
}

ndvi_dif_vis = {
    'min': -1000,
    'max': 1000,
    'palette': [
        '#d7191c', '#ffffff', '#008000'
    ]
}

map.addLayer( ndvi_avg, ndvi_vis,  'NDVI', bounds=region.getBounds() )

map.addLayer( ndvi_dif_forest, ndvi_dif_vis, 'NDVI_dif_forest',  bounds=region.getBounds())

map

备注:本案例中仅取2020年森林分类成果作为掩膜文件,仅作为做算子应用介绍,数据成果合理性不做保证。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 浙江省森林区域植被生长分析¶
    • 初始化环境¶
      • 定义矢量区域¶
        • 获取森林区域掩膜¶
          • 植被生长对比¶
          相关产品与服务
          灰盒安全测试
          腾讯知识图谱(Tencent Knowledge Graph,TKG)是一个集成图数据库、图计算引擎和图可视化分析的一站式平台。支持抽取和融合异构数据,支持千亿级节点关系的存储和计算,支持规则匹配、机器学习、图嵌入等图数据挖掘算法,拥有丰富的图数据渲染和展现的可视化方案。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档