前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【动手学深度学习】深入浅出深度学习之利用神经网络识别螺旋状数据集

【动手学深度学习】深入浅出深度学习之利用神经网络识别螺旋状数据集

作者头像
SarPro
发布2024-04-02 09:17:19
1010
发布2024-04-02 09:17:19
举报
文章被收录于专栏:【计网】Cisco【计网】Cisco

🌞一、实验目的

  1. 利用神经网络识别螺旋状数据集(python实现);
  2. 正确理解深度学习所需的数学知识。

🌞二、实验准备

  1. 根据GPU安装pytorch版本实现GPU运行实验代码;
  2. 配置环境用来运行 Python、Jupyter Notebook和相关库等相关库。

🌞三、实验内容

资源获取:关注公众号【科创视野】回复 深度学习

🌼1. 生成螺旋状数据集

(1)利用numpy库生成螺旋状数据集,python源码如下:

代码语言:javascript
复制
# coding: utf-8
import numpy as np


def load_data(seed=2020264):   #🍕🍕🍕生成数据集🍕🍕🍕
    np.random.seed(seed)  #设置随机数种子
    N = 100  # 各类的样本数
    DIM = 2  # 数据的元素个数
    CLS_NUM = 3  # 类别数

    x = np.zeros((N*CLS_NUM, DIM))
    t = np.zeros((N*CLS_NUM, CLS_NUM), dtype=np.int)

    for j in range(CLS_NUM):
        for i in range(N):#N*j, N*(j+1)):
            rate = i / N
            radius = 1.0*rate
            theta = j*4.0 + 4.0*rate + np.random.randn()*0.2

            ix = N*j + i
            x[ix] = np.array([radius*np.sin(theta),
                              radius*np.cos(theta)]).flatten()
            t[ix, j] = 1

    return x, t

解释:

1.代码中导入了numpy库,用于生成和处理数组。 2.load_data函数:该函数用于生成数据集。接受一个seed参数,用于设置随机数生成的种子,以确保结果的可重复性。 3.设置参数:在函数内部,定义了几个参数,包括样本数N、数据的元素个数DIM和类别数CLS_NUM。这些参数用于确定生成数据的规模和属性。 4.初始化数组:通过np.zeros函数创建了两个数组x和t,用于存储生成的样本和对应的标签。 5.数据生成循环:通过两个嵌套的循环,依次生成每个类别的样本。外层循环遍历类别数,内层循环生成每个类别中的样本。 6.样本生成:在内层循环中,首先根据当前类别和样本索引计算出一个比例rate,用于确定样本的半径。然后,根据一定的规则计算样本的极坐标位置(半径和角度),并引入一定的随机扰动。最后,将样本的极坐标位置转换为笛卡尔坐标位置,并存储在数组x中。 7.标签生成:在内层循环中,通过将当前样本所属类别对应的位置设为1,将标签存储在数组t中。 8.返回结果:最后,函数返回生成的样本数组x和标签数组t。

🌼2. 打印数据集

在加载完数据集后,利用plt将生成的数据集打印出来,python源码如下:

代码语言:javascript
复制
# coding: utf-8
import sys
sys.path.append('..')  # 为了引入父目录的文件而进行的设定
import matplotlib.pyplot as plt


x, t = load_data()
print('x', x.shape)  # (300, 2)
print('t', t.shape)  # (300, 3)

# 绘制数据点
N = 100
CLS_NUM = 3
markers = ['o', 'x', '^']
for i in range(CLS_NUM):
    plt.scatter(x[i*N:(i+1)*N, 0], x[i*N:(i+1)*N, 1], s=40, marker=markers[i])
plt.show()

解释:

1.导入sys和matplotlib.pyplot库。sys库用于在代码中添加父目录的路径,而matplotlib.pyplot库用于数据可视化。 2.添加父目录路径:通过sys.path.append('..')语句,将父目录路径添加到代码中。这样做是为了能够引入父目录中的文件,这里是为了引入之前定义的load_data()函数。 3.调用load_data()函数:通过调用load_data()函数,生成数据集的特征数组x和标签数组t。 4.打印数组形状:通过print()语句打印出数据集特征数组x和标签数组t的形状。x.shape输出的结果是(300, 2),表示x数组有300行和2列;t.shape输出的结果是(300, 3),表示t数组有300行和3列。这里的形状信息给出了生成数据集的维度信息。 5.绘制数据点:接下来,通过使用matplotlib.pyplot库来绘制数据集的散点图。循环遍历每个类别,利用plt.scatter()函数绘制对应类别的数据点。函数中的参数包括样本的x坐标和y坐标,使用不同的标记形状markers[i]和尺寸s=40来区分不同类别的数据点。 6.显示图像:最后,通过plt.show()函数显示绘制的图像,将数据集的散点图展示出来。

结果图为:

🌼3. 编程实现
🌻仿射层-Affine类
代码语言:javascript
复制
class Affine:
    def __init__(self,W,b):
        self.params = [W,b]#保存参数
        self.grads = [np.zeros_like(W),np.zeros_like(b)]#保存梯度
        self.x = None
    def forward(self,x):
        W,b = self.params
        out = np.dot(x,W) + b
        self.x = x
        return out
    def backward(self,dout):
        W,b = self.params
        dx = np.dot(dout,W.T)
        dW = np.dot(self.x.T,dout)
        db = np.sum(dout,axis=0)
        
        self.grads[0][...] = dW  
        self.grads[1][...] = db
        return dx

解释:

1.Affine类表示神经网络中的仿射层(Affine Layer)。类的初始化方法(__init__):该方法在创建Affine类的实例时被调用。它接受两个参数W和b,分别表示仿射层的权重和偏置。在方法中,首先创建了一个params列表,用于保存权重和偏置参数。然后创建了一个grads列表,用于保存权重和偏置参数的梯度。最后,初始化了一个x变量,并将其设为None。 2.前向传播方法(forward):该方法接受一个输入x,并根据保存的权重和偏置参数进行仿射变换。首先,从params列表中获取权重W和偏置b。然后,通过计算输入x与权重W的乘积,并加上偏置b,得到输出out。最后,将输入x保存在self.x变量中,并返回输出out。 3.反向传播方法(backward):该方法接受一个上游梯度dout,并根据保存的权重和输入x计算梯度。首先,从params列表中获取权重W和偏置b。然后,通过上游梯度dout与权重W的转置的乘积,得到对输入x的梯度dx。接下来,计算权重W的梯度dW,通过将输入x的转置与上游梯度dout的乘积得到。最后,计算偏置b的梯度db,通过对上游梯度dout按列求和得到。 4.更新梯度和返回梯度:在方法的最后,通过将权重和偏置的梯度分别赋值给self.grads列表中对应的元素,来更新梯度信息。使用[...]操作符可以确保在赋值时不改变梯度数组的形状和数据类型。最后返回输入的梯度dx,以便反向传播给前一层。

🌻传播层-Sigmoid类
代码语言:javascript
复制
class Sigmoid:
    def __init__(self):
        self.params = []
        self.grads = []
        self.out = None
    def forward(self,x):
        out = 1 / (1 + np.exp(-x))
        self.out = out
        return out
    def backward(self,dout):
        dx = dout * (1.0 - self.out) * self.out
        return dx

解释:

1.Sigmoid类表示一个Sigmoid函数。类的初始化:在__init__方法中,定义了三个实例变量params、grads和out,分别用于存储参数、梯度和前向传播的输出结果。这些变量在类的实例化时被创建,并初始化为空。 2.前向传播:在forward方法中,接收输入x作为参数。通过应用Sigmoid函数的定义,计算出输出out,即 1 / (1 + np.exp(-x))。然后将计算结果赋值给实例变量self.out,以便在反向传播中使用,并返回输出out。 3.反向传播:在backward方法中,接收反向传播的上游梯度dout作为参数。通过应用Sigmoid函数的导数公式,计算出输入x的梯度dx,即 dout * (1.0 - self.out) * self.out。然后返回计算得到的梯度dx。

🌻损失函数相关类
代码语言:javascript
复制
def softmax(x):
    if x.ndim == 1:
        x = x - np.max(x)
        x = np.exp(x)/np.sum(np.exp(x))
    elif x.ndim == 2:
        x = x - x.max(axis = 1,keepdims = True)
        x = np.exp(x)
        x /= x.sum(axis=1, keepdims=True)
    return x

def cross_entropy_error(y,t):
    if y.ndim == 1:
        t = t.reshape(1,t.size)
        y = y.reshape(1,y.size)
        
    #因为监督标签是one-hot-vector形式,所以这里要取下标    
    if t.size == y.size:
        t = t.argmax(dim=1)
    
    batch_size = y.shape[0]
    #没看懂为啥
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size
    
    
class SoftmaxWithLoss:
    def __init__(self):
        self.params = []
        self.grads = []
        self.y = None #softmx的输出
        self.t = None #监督标签
    
    def forward(self,x,t):
        self.t = t
        self.y = softmax(x)
        
        if self.t.size == self.y.size:
            self.t = self.t.argmax(axis=1)
        
        loss = cross_entropy_error(self.y,self.t)
        return loss
    def backward(self,dout =1):
        batch_size = self.t.shape[0]
        dx = self.y.copy()
        dx[np.arange(batch_size),self.t] -= 1
        dx *= dout
        dx = dx/batch_size
        
        return dx

解释:

1. softmax函数实现了Softmax函数的计算,接受一个数组x作为输入,根据输入的维度情况进行不同的计算。 当x的维度是1维时,首先将x减去最大值,然后计算每个元素的指数,并除以所有指数的和,得到Softmax函数的输出。 当x的维度是2维时,首先将x每行减去对应行的最大值,然后计算每个元素的指数,并除以每行指数的和,得到Softmax函数的输出。 最后,返回计算得到的Softmax函数的输出。 2. cross_entropy_error函数:实现交叉熵损失函数的计算。接受两个数组y和t作为输入,根据输入的维度情况进行不同的计算。 首先,根据输入的维度情况将t的形状调整为和y相同的形状,以便进行计算。 如果t的大小和y的大小相同,说明t是以one-hot向量形式表示的监督标签,这里将其转换为对应的类别索引。 接着,根据批量的大小计算交叉熵损失,通过对y使用np.arange(batch_size)和t的索引,取出正确类别的预测概率,并计算其对数,然后求和并取负数,最后除以批量大小得到平均损失。 最后,返回计算得到的交叉熵损失。 3. SoftmaxWithLoss类:这个类实现了Softmax with Loss层,包含了前向传播和反向传播的计算。 __init__方法用于初始化类的实例变量,包括参数列表params、梯度列表grads,以及用于保存Softmax函数的输出y和监督标签t的变量。 forward方法用于执行前向传播计算,接受输入x和监督标签t作为参数。在该方法中,首先将t赋值给实例变量self.t,然后使用softmax函数计算x的Softmax输出y。接着根据t的维度情况将t转换为类别索引形式。最后调用cross_entropy_error函数计算Softmax with Loss的损失并返回。 backward方法用于执行反向传播计算,接受一个可选的上游梯度dout作为参数,默认为1。在该方法中,首先获取监督标签的批量大小,然后创建一个梯度副本dx,并将其初始化为Softmax函数输出y的副本。接下来,根据监督标签的索引,在dx中将正确类别的位置减去1,以计算Softmax with Loss层的梯度。然后,将梯度乘以上游梯度dout,并除以批量大小,以获得平均梯度。最后,返回计算得到的梯度dx。

🌻三层神经网络类-ThreeLayerNet
代码语言:javascript
复制
class ThreeLayerNet:
    def __init__(self,input_size,hidden_size1,hidden_size2,output_size):
        I,H1,H2,O = input_size,hidden_size1,hidden_size2,output_size
    #初始化权重和偏置
        W1 = 0.01 * np.random.randn(I,H1)    #形状:I*H
        b1 = np.zeros(H1)
        W2 = 0.01 * np.random.randn(H1,H2)
        b2 = np.zeros(H2)
        W3 = 0.01 * np.random.randn(H2,O)
        b3 = np.zeros(O)
        #生成层
        self.layers = [
            Affine(W1,b1),
            Sigmoid(),
            Affine(W2,b2),
            Sigmoid(),
            Affine(W3,b3)
        ]
        #Softmax With Loss层和其他层的处理方式不同
        #所以不将它放在layers列表中,而是单独存储在变量loss_layer中
        self.loss_layer = SoftmaxWithLoss()
        self.params,self.grads = [],[]
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
    def predict(self,x):
        for layer in self.layers:
            x = layer.forward(x)
        return x

    def forward(self,x,t):
        score = self.predict(x)
        loss = self.loss_layer.forward(score,t)
        return loss
    
    def backward(self,dout = 1):
        dout = self.loss_layer.backward(dout)
        for layer in reversed(self.layers):
            dout = layer.backward(dout)
        return dout

解释:

1.这里我实现了一个三层神经网络的类ThreeLayerNet,该类包含了网络的初始化、前向传播、反向传播和预测等方法。在初始化方法__init__中,定义了神经网络的结构和初始化权重和偏置。input_size表示输入层的大小,hidden_size1和hidden_size2表示两个隐藏层的大小,output_size表示输出层的大小。 2.权重的初始化采用了高斯分布随机初始化,通过np.random.randn生成服从标准正态分布的随机数,并乘以0.01进行缩放。偏置初始化为全零向量。 3.下面生成了三个层的实例,并按照顺序存储在self.layers列表中,分别是全连接层(Affine)、激活函数层(Sigmoid)和输出层(Softmax With Loss)。为了方便参数更新,将各层的参数和梯度分别存储在self.params和self.grads列表中。 4.predict方法用于进行前向传播,通过遍历self.layers列表,依次调用每个层的前向传播方法forward,并将输出作为下一层的输入,最终返回最后一层的输出结果。 5.forward方法在进行预测的同时,计算了损失值。首先调用predict方法获取输出结果,然后将输出结果和目标值t传入损失层self.loss_layer的前向传播方法forward,计算得到损失值,并返回。 6.backward方法用于进行反向传播,接收一个梯度dout作为输入,该梯度的默认值为1。首先将梯度传递给损失层self.loss_layer的反向传播方法backward,得到更新后的梯度。然后按照相反的顺序遍历self.layers列表,依次调用每个层的反向传播方法backward,将更新后的梯度传递给前一层,最终返回最初输入层的梯度。

🌻随机梯度下降法的类-SGD
代码语言:javascript
复制
class SGD:
    '''
    随机梯度下降法(Stochastic Gradient Descent)
    '''
    def __init__(self, lr=0.01):
        self.lr = lr
        
    def update(self, params, grads):
        for i in range(len(params)):
            params[i] -= self.lr * grads[i]

解释:

1.这里我实现了随机梯度下降法(Stochastic Gradient Descent,SGD)的类SGD,用于更新神经网络的参数。在初始化方法__init__中,定义了学习率lr,默认值为0.01。学习率控制了每次参数更新的步长。 2.update方法接收两个参数:params是网络中的参数列表,grads是对应参数的梯度列表。该方法根据SGD的更新规则,对每个参数进行更新。 3.在循环中,遍历了参数列表params和梯度列表grads的索引。对于每个参数和对应的梯度,使用梯度乘以学习率的方式更新参数。这里采用了原地更新,即直接在参数列表中更新参数的值。 4.通过减去学习率乘以梯度,实现了参数的更新。

🌻训练过程
代码语言:javascript
复制
#1.设定超参数
max_epoch = 300
batch_size = 30 
hidden_size = 10
learning_rate  =3.5

#2.读入数据,生成模型和优化器
x,t = load_data()
model = ThreeLayerNet(input_size=2,hidden_size1=hidden_size,hidden_size2=hidden_size,output_size=3)
optimizer = SGD(lr=learning_rate)

#学习用的变量
data_size = len(x)
max_iters = data_size // batch_size
total_loss = 0
loss_count = 0
loss_list = []

for epoch in range(max_epoch):
    #3.打乱数据
    idx = np.random.permutation(data_size)
    x = x[idx]
    t = t[idx]
    
    for iters in range(max_iters):
        batch_x = x[iters*batch_size:(iters+1)*batch_size]
        batch_t = t[iters*batch_size:(iters+1)*batch_size]

        #4.计算梯度,更新参数
        loss = model.forward(batch_x,batch_t)
        model.backward()
        optimizer.update(model.params,model.grads)

        total_loss += loss
        loss_count += 1

        #5.定期输出学习过程
        if (iters+1)%10 == 0:
            avg_loss = total_loss / loss_count
            print('| epoch %d | iterations %d / %d | loss %0.2f'% (epoch+1,iters + 1,max_iters,avg_loss))
            loss_list.append(avg_loss)
            total_loss,loss_count = 0,0

解释:

1.这里我实现了一个训练过程的循环,其中包含了数据处理、模型的前向传播、反向传播以及参数更新的步骤。首先,在代码中设定了一些超参数,包括最大迭代次数max_epoch、批大小batch_size、隐藏层大小hidden_size和学习率learning_rate。接下来,通过调用load_data函数读取数据,然后创建了一个ThreeLayerNet类的实例model,指定了输入层大小为2、两个隐藏层大小为hidden_size、输出层大小为3的网络结构。同时,创建了一个SGD类的实例optimizer,传入学习率learning_rate。接着,初始化了一些用于学习过程的变量,包括数据集大小data_size、每个迭代中的最大批次数max_iters、总损失total_loss、损失计数loss_count和损失列表loss_list。 2.下面是主要的训练循环,通过max_epoch控制迭代次数。在每个迭代中,首先进行数据的打乱操作,使用np.random.permutation对数据索引进行随机排列,然后根据打乱后的索引重新排列输入数据x和目标数据t,实现数据的随机化。然后,在每个迭代中,根据最大批次数max_iters遍历数据集。每次迭代从数据集中选取一批数据,包括输入数据batch_x和目标数据batch_t,并进行以下步骤: 调用模型的forward方法,计算当前批次的损失值,并返回该损失值。 调用模型的backward方法,根据损失值进行反向传播,计算参数的梯度。 调用优化器的update方法,根据梯度更新模型的参数。 3.累计当前批次的损失值到total_loss中,并增加loss_count计数器。如果当前批次的迭代次数是10的倍数,输出当前迭代的平均损失值,并将其添加到loss_list列表中。将total_loss和loss_count重置为0,为下一个迭代做准备。 训练循环的目的是通过多次迭代和参数更新,逐渐减小损失值,使模型适应训练数据,实现模型的训练过程。输出的学习过程中的损失值可以用于监控训练的进展。

运行迭代300次的结果图如下:

代码语言:javascript
复制
x, t = load_data()

# 绘制数据点
N = 100
CLS_NUM = 3
markers = ['o', 'x', '^']

# 绘制决策边界
h = 0.001
x_min, x_max = x[:, 0].min() - .1, x[:, 0].max() + .1
y_min, y_max = x[:, 1].min() - .1, x[:, 1].max() + .1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
X = np.c_[xx.ravel(), yy.ravel()]
score = model.predict(X)
predict_cls = np.argmax(score, axis=1)
Z = predict_cls.reshape(xx.shape)
plt.contourf(xx, yy, Z)
for i in range(CLS_NUM):
    plt.scatter(x[i*N:(i+1)*N, 0], x[i*N:(i+1)*N, 1], s=40, marker=markers[i])

plt.axis('off') # 是否关闭坐标轴
plt.show()

解释:

1.这里用于绘制数据点和模型的决策边界。首先,调用load_data函数加载数据,并将输入数据赋值给变量x,目标数据赋值给变量t。接着,定义了一些用于绘制的参数。N表示每个类别的数据点数量,CLS_NUM表示类别的数量,markers是绘制数据点时使用的标记符号。然后,通过指定步长h和输入数据的范围,创建了一个网格xx和yy,用于在整个输入空间上生成一组点。这些点将用于计算模型的预测结果,并绘制决策边界。 2.通过调用模型的predict方法,对生成的点进行预测。X是一个二维数组,每一行表示一个点的坐标。将这些点作为输入,得到模型的预测结果score,其中score是一个二维数组,表示每个点属于不同类别的概率。 3.使用np.argmax函数找到每个点概率最大的类别索引,得到预测的类别标签predict_cls。然后将predict_cls重新调整为与网格一样的形状,得到二维数组Z,用于绘制决策边界。 4.使用plt.contourf函数绘制决策边界,通过填充不同区域的颜色来表示不同的类别。 5.接下来,使用循环遍历每个类别,并使用plt.scatter函数绘制每个类别的数据点。通过切片操作x[i*N:(i+1)*N, 0]和x[i*N:(i+1)*N, 1],选择属于当前类别的数据点的坐标,并使用对应的标记符号进行绘制。 6.最后,通过plt.axis('off')设置是否关闭坐标轴,并调用plt.show()显示绘制的图像。

由此产生的图像可以看到相较于两层神经网络的效果更好,三层神经网络的结果如下所示:

🌻绘制迭代效果图
代码语言:javascript
复制
# loss_list----记录300次迭代次数
import numpy as np
import matplotlib.pyplot as plt
#正确显示中文和负号
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
# 数据准备
x3=range(1,301)
y3=loss_list
# 设置画布大小
plt.figure(figsize=(12, 5))
# plot 画x与y和x与z的关系图
plt.plot(x3,y3,label='损失函数',color='#1F77B4', linewidth=1,marker='',markersize=3)
# 设置x轴标签、坐标轴范围,坐标轴刻度,坐标轴刻度旋转角度
plt.xlabel('iterations(x10)',size=14)
plt.xlim(0,300)
plt.xticks([0,50,100,150,200,250,300],rotation=0,size=12) #
# 设置y轴标签、坐标轴范围,坐标轴刻度,坐标轴刻度旋转角度
plt.ylabel('loss',size=14)
plt.ylim(0,1.2)
plt.yticks([0,0.2,0.4,0.6,0.8,1.0,1.2],rotation=0,size=12)
#标题
plt.title('损失函数',size=18)
# 紧凑布局:自动调整图形、坐标轴、标签之间的距离,对于多个子图时尤其有用。
plt.tight_layout()
# 设置显示图例,要在plt.plot 时设置 label='xxx'才能显示图例
plt.legend()
#加网格线
plt.grid(True)
# 保存图像,可以是任意后缀名,dpi设置图像清晰度
#plt.savefig('./fig1.pdf', dpi=600)  #要放在plt.show()之前,否作保存的图像为空白
# 显示图像
plt.show()

解释:

1.设置中文和负号显示:通过设置plt.rcParams['font.sans-serif']=['SimHei']和plt.rcParams['axes.unicode_minus']=False来确保图表中的中文和负号能够正确显示。 2.数据准备:定义了一个x轴的范围从1到300,以及一个y轴的数据列表loss_list,用于记录300次迭代的损失函数值。 3.设置画布大小:通过plt.figure(figsize=(12, 5))设置绘图画布的大小为宽度12英寸、高度5英寸。 4.绘制曲线:使用plt.plot(x3, y3, label='损失函数', color='#1F77B4', linewidth=1, marker='', markersize=3)绘制曲线,x轴为迭代次数,y轴为损失函数值。label='损失函数'用于在图例中显示曲线的标签,color='#1F77B4'设置曲线的颜色,linewidth=1设置曲线的线宽,marker=''表示不显示数据点的标记,markersize=3设置数据点的大小。 5.设置坐标轴和刻度:使用plt.xlabel('iterations(x10)', size=14)设置x轴的标签为'iterations(x10)',plt.xlim(0, 300)设置x轴的范围为0到300,plt.xticks([0,50,100,150,200,250,300],rotation=0,size=12)设置x轴的刻度为[0, 50, 100, 150, 200, 250, 300],rotation=0表示刻度标签不旋转,size=12表示刻度标签的字体大小。 6.设置y轴的标签和刻度同理。设置标题:使用plt.title('损失函数', size=18)设置图表的标题为'损失函数',size=18表示标题的字体大小。 7.调整布局:使用plt.tight_layout()自动调整图形、坐标轴、标签之间的距离,使其紧凑显示。 8.显示图例:使用plt.legend()显示图例,前提是在绘制曲线时设置了label='损失函数'。添加网格线:使用plt.grid(True)添加网格线。

实验结果如下:


🌞四、实验心得

通过这次实验,我成功创建了一个用于识别螺旋状的数据集三层神经网络,并对深度学习所需的数学知识有了更深入的理解。

一开始,我选择了ReLU激活函数,但是在调整学习率时无法找到合适的参数。因此改用Sigmoid作为激活函数。通过建立三层神经网络,我发现之前适用于两层神经网络的学习率并不适用于三层神经网络,需要重新寻找适合的学习率,而学习率设置得太小会导致学习的收敛速度变慢。

通过对比两层和三层神经网络的训练结果,我发现它们之间存在明显的差异,特别是在中心点区域。这说明增加网络的层数可以更好地拟合复杂的数据集,但也需要仔细调整参数以确保网络的有效训练。

两层神经网络结果:

三层神经网络结果:

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2024-04-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 🌞二、实验准备
  • 🌞三、实验内容
    • 🌼1. 生成螺旋状数据集
      • 🌼2. 打印数据集
        • 🌼3. 编程实现
          • 🌻仿射层-Affine类
          • 🌻传播层-Sigmoid类
          • 🌻损失函数相关类
          • 🌻三层神经网络类-ThreeLayerNet
          • 🌻随机梯度下降法的类-SGD
          • 🌻训练过程
          • 🌻绘制迭代效果图
      • 🌞四、实验心得
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档