前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Quant102】 经典技术指标 Pandas 实现(第一部分)

【Quant102】 经典技术指标 Pandas 实现(第一部分)

作者头像
ApacheCN_飞龙
发布2024-05-16 15:29:17
1320
发布2024-05-16 15:29:17
举报
文章被收录于专栏:信数据得永生

双均线策略

假设你是个高级程序员和量化研究员,编写函数实现双均线策略。函数接受数据帧df,较短均线的列名称short_col和较长均线的列名称long_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def dual_moving_average_strategy(df, short_col='sma_short', long_col='sma_long', inplace=False):
    """
    实现双均线策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame。
    short_col : str
        短周期均线的列名。
    long_col : str
        长周期均线的列名。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    if not inplace:
        df = df.copy()

    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:短周期均线由下向上穿越长周期均线
    df.loc[(df[short_col] > df[long_col]) & (df[short_col].shift(1) <= df[long_col].shift(1)), 'signal'] = 1
    
    # 产生卖出信号:短周期均线由上向下穿越长周期均线
    df.loc[(df[short_col] < df[long_col]) & (df[short_col].shift(1) >= df[long_col].shift(1)), 'signal'] = -1
    
    return df

布林带指标

假设你是个高级程序员和量化研究员,编写函数实现布林带指标。函数接受数据帧df,中布林带的列名称mid_col,上布林带列名称upper_col,下布林带列名称lower_colinplace参数控制是否原地更新dfdf包含四个列:open开盘价、high最高价、low最低价和close收盘价。所有指标都应当保存到df中,最后返回df

代码语言:javascript
复制
def bollinger_bands(
	df, mid_col='mid_band', 
	upper_col='upper_band', 
	lower_col='lower_band', 
	window=20, num_std=2, 
	inplace=False
):
    """
    计算布林带指标,并更新DataFrame。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'open', 'high', 'low', 'close'列。
    window : int, optional
        计算简单移动平均线SMA的窗口大小,默认为20。
    num_std : int, optional
        计算布林带通道时使用的标准差倍数,默认为2。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        包含布林带指标的新DataFrame(如果inplace为False)。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 计算中轨(简单移动平均线SMA)
    df['mid_band'] = df['close'].rolling(window=window).mean()
    
    # 计算价格的标准差
    std = df['close'].rolling(window=window).std()
    
    # 计算布林带上轨
    df['upper_band'] = df['mid_band'] + (std * num_std)
    
    # 计算布林带下轨
    df['lower_band'] = df['mid_band'] - (std * num_std)
    
    return df

布林带策略

假设你是个高级程序员和量化研究员,编写函数实现布林带策略。函数接受数据帧df,中轨的列名称mid_col,上轨列名称upper_col,下轨列名称lower_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def bollinger_bands_strategy(df, mid_col='mid_band', upper_col='upper_band', lower_col='lower_band', inplace=False):
    """
    实现布林带策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'mid_col', 'upper_col', 'lower_col'列。
    mid_col : str
        中轨(通常是简单移动平均线SMA)的列名。
    upper_col : str
        上轨的列名。
    lower_col : str
        下轨的列名。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:价格跌破下轨
    df.loc[df['close'] < df[lower_col], 'signal'] = 1
    
    # 产生卖出信号:价格突破上轨
    df.loc[df['close'] > df[upper_col], 'signal'] = -1
    
    return df

MACD 指标

假设你是个高级程序员和量化研究员,编写函数实现 MACD 指标。函数接受数据帧dfinplace参数控制是否原地更新dfdf包含四个列:open开盘价、high最高价、low最低价和close收盘价。所有指标都应当保存到df中,最后返回df

代码语言:javascript
复制
def macd(df, dea_col='dea', dif_col='dif', hist_col='macd_hist', fast_window=12, slow_window=26, signal_window=9, inplace=False):
    """
    计算MACD指标,并更新DataFrame。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'open', 'high', 'low', 'close'列。
    fast_window : int, optional
        快速EMA的窗口大小,默认为12。
    slow_window : int, optional
        慢速EMA的窗口大小,默认为26。
    signal_window : int, optional
        信号线的窗口大小,默认为9。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        包含MACD指标的新DataFrame(如果inplace为False)。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 计算快速EMA
    fast_ema = df['close'].ewm(span=fast_window, adjust=False).mean()
    
    # 计算慢速EMA
    slow_ema = df['close'].ewm(span=slow_window, adjust=False).mean()
    
    # 计算MACD线
    df[dea_col] = fast_ema - slow_ema
    
    # 计算信号线
    df[dif_col] = df[dea_col].ewm(span=signal_window, adjust=False).mean()
    
    # 计算MACD柱
    df[hist_col] = df[dea_col] - df[dif_col]
    
    return df

MACD 策略

假设你是个高级程序员和量化研究员,编写函数实现MACD策略。函数接受数据帧df,DEA列名称dea_col,DIF列名称dif_col,柱状图列名称hist_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def macd_strategy(df, dea_col='dea', dif_col='dif', hist_col='macd_hist', inplace=False):
    """
    实现MACD策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含MACD指标数据的DataFrame,必须包含'dea_col', 'dif_col', 'hist_col'列。
    dea_col : str
        DEA(信号线)的列名。
    dif_col : str
        DIF(MACD线)的列名。
    hist_col : str
        MACD柱状图的列名。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:DIF上穿DEA
    df.loc[(df[dif_col] > df[dea_col]) & (df[dif_col].shift(1) <= df[dea_col].shift(1)), 'signal'] = 1
    
    # 产生卖出信号:DIF下穿DEA
    df.loc[(df[dif_col] < df[dea_col]) & (df[dif_col].shift(1) >= df[dea_col].shift(1)), 'signal'] = -1
    
    return df

RSI 指标

假设你是个高级程序员和量化研究员,编写函数实现 RSI 指标。函数接受数据帧dfinplace参数控制是否原地更新dfdf包含四个列:open开盘价、high最高价、low最低价和close收盘价。所有指标都应当保存到df中,最后返回df

代码语言:javascript
复制
def rsi(df, rsi_col='rsi', window=14, inplace=False):
    """
    计算RSI指标,并更新DataFrame。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'open', 'high', 'low', 'close'列。
    window : int, optional
        RSI指标的窗口大小,默认为14。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        包含RSI指标的新DataFrame(如果inplace为False)。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 计算价格变动
    chg = df['close'].diff()
    
    # 计算上涨和下跌的平均值
    up_avg = chg.where(chg > 0).rolling(window=window).mean()
    down_avg = -chg.where(chg < 0).rolling(window=window).mean()
    
    # 防止除以零
    up_avg.fillna(0, inplace=True)
    down_avg.fillna(0, inplace=True)
    
    # 计算RSI
    df[rsi_col] = 100 - (100 / (1 + (up_avg / down_avg)))
    
    return df

RSI 策略

假设你是个高级程序员和量化研究员,编写函数实现RSI策略。函数接受数据帧df,RSI列名称rsi_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def rsi_strategy(df, rsi_col='rsi', inplace=False):
    """
    实现RSI策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含RSI指标数据的DataFrame,必须包含'rsi_col'列。
    rsi_col : str
        RSI指标的列名。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:RSI低于30
    df.loc[df[rsi_col] < 30, 'signal'] = 1
    
    # 产生卖出信号:RSI高于70
    df.loc[df[rsi_col] > 70, 'signal'] = -1
    
    return df

KDJ 指标

假设你是个高级程序员和量化研究员,编写函数实现 KDJ 指标。函数接受数据帧dfinplace参数控制是否原地更新dfdf包含四个列:open开盘价、high最高价、low最低价和close收盘价。所有指标都应当保存到df中,最后返回df

代码语言:javascript
复制
def kdj(df, k_col='K', d_col='D', j_col='J', n=9, m1=3, m2=3, inplace=False):
    """
    计算KDJ指标,并更新DataFrame。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'open', 'high', 'low', 'close'列。
    n : int, optional
        计算KDJ指标的时间窗口,默认为9。
    m1 : int, optional
        计算D线的时间窗口,默认为3。
    m2 : int, optional
        计算J线的参数,默认为3。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        包含KDJ指标的新DataFrame(如果inplace为False)。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 计算最小值和最大值
    low_min = df['low'].rolling(window=n).min()
    high_max = df['high'].rolling(window=n).max()
    
    # 计算K值
    df[k_col] = (df['close'] - low_min) / (high_max - low_min) * 100
    
    # 计算D值
    df[d_col] = df[k_col].rolling(window=m1).mean()
    
    # 计算J值
    df[j_col] = m2 * df[d_col] - df[k_col].rolling(window=m2).mean()
    
    return df

KDJ 策略

假设你是个高级程序员和量化研究员,编写函数实现KDJ策略。函数接受数据帧df,K/D/J列名称k_cold_colj_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def kdj_strategy(df, k_col='K', d_col='D', j_col='J', inplace=False):
    """
    实现KDJ策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含KDJ指标数据的DataFrame,必须包含'k_col', 'd_col', 'j_col'列。
    k_col : str
        K值的列名。
    d_col : str
        D值的列名。
    j_col : str
        J值的列名。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:K值上穿D值
    df.loc[(df[k_col] > df[d_col]) & (df[k_col].shift(1) <= df[d_col].shift(1)), 'signal'] = 1
    
    # 产生卖出信号:K值下穿D值
    df.loc[(df[k_col] < df[d_col]) & (df[k_col].shift(1) >= df[d_col].shift(1)), 'signal'] = -1
    
    return df

CCI 指标

假设你是个高级程序员和量化研究员,编写函数实现 CCI 指标。函数接受数据帧dfinplace参数控制是否原地更新dfdf包含四个列:open开盘价、high最高价、low最低价和close收盘价。所有指标都应当保存到df中,最后返回df

代码语言:javascript
复制
def cci(df, cci_col='cci', n=20, inplace=False):
    """
    计算CCI指标,并更新DataFrame。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'open', 'high', 'low', 'close'列。
    n : int, optional
        CCI指标的时间窗口,默认为20。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        包含CCI指标的新DataFrame(如果inplace为False)。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 计算移动平均值
    sma = df['close'].rolling(window=n).mean()
    
    # 计算标准差
    std = df['close'].rolling(window=n).std()
    
    # 计算CCI
    df[cci_col] = (df['close'] - sma) / (0.015 * std)
    
    return df

CCI 策略

假设你是个高级程序员和量化研究员,编写函数实现CCI策略。函数接受数据帧df,CCI列名称cci_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def cci_strategy(df, cci_col='cci', inplace=False):
    """
    实现CCI策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含CCI指标数据的DataFrame,必须包含'cci_col'列。
    cci_col : str
        CCI指标的列名。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:CCI低于-100
    df.loc[df[cci_col] < -100, 'signal'] = 1
    
    # 产生卖出信号:CCI高于+100
    df.loc[df[cci_col] > 100, 'signal'] = -1
    
    return df

OBV 指标

假设你是个高级程序员和量化研究员,编写函数实现 OBV 指标。函数接受数据帧dfinplace参数控制是否原地更新dfdf包含四个列:open开盘价、high最高价、low最低价和close收盘价。所有指标都应当保存到df中,最后返回df

代码语言:javascript
复制
def obv(df, obv_col='obv', inplace=False):
    """
    计算OBV指标,并更新DataFrame。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'open', 'high', 'low', 'close'列。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        包含OBV指标的新DataFrame(如果inplace为False)。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
	# 计算收盘价差异的符号
    chg = df['close'].diff()
	sgn = np.sign(chg)
	sgn.iloc[0] = 0
	# 计算OBV
	df[obv_col] = (df['volume'] * sgn).cumsum()
    
    return df

OBV 策略

假设你是个高级程序员和量化研究员,编写函数实现OBV策略。函数接受数据帧df,OBV列名称obv_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def obv_strategy(df, obv_col, inplace=False):
    """
    实现OBV策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含OBV指标数据的DataFrame,必须包含'obv_col'列。
    obv_col : str
        OBV指标的列名。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:OBV连续上升
    df.loc[df[obv_col].rolling(window=3).sum() > 0, 'signal'] = 1
    
    # 产生卖出信号:OBV连续下降
    df.loc[df[obv_col].rolling(window=3).sum() < 0, 'signal'] = -1
    
    return df

ADX 指标

假设你是个高级程序员和量化研究员,编写函数实现 ADX 指标。函数接受数据帧dfinplace参数控制是否原地更新dfdf包含四个列:open开盘价、high最高价、low最低价和close收盘价。所有指标都应当保存到df中,最后返回df

代码语言:javascript
复制
def adx(df, window=14, inplace=False):
    """
    计算ADX指标,并更新DataFrame。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'open', 'high', 'low', 'close'列。
    window : int, optional
        ADX指标的时间窗口,默认为14。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        包含ADX指标的新DataFrame(如果inplace为False)。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 计算最高价和最低价之间的差异
    df['range'] = df['high'] - df['low']
    
    # 计算动量(Momentum)
    plus_dm = np.where(df['close'] - df['open'] > 0, df['range'], 0)
    minus_dm = np.where(df['open'] - df['close'] > 0, -df['range'], 0)
    
    # 计算ADM和ADN
    plus_dm_mean = plus_dm.rolling(window=window).mean()
    minus_dm_mean = minus_dm.rolling(window=window).mean()
    
    # 计算DX
    dx = (plus_dm_mean - minus_dm_mean) / (plus_dm_mean + minus_dm_mean)
    dx_mean = dx.rolling(window=window).mean()
    
    # 计算ADX
    df['adx'] = (100 - 100 / (1 + np.sqrt(dx_mean)))
    
    return df

ADX 策略

假设你是个高级程序员和量化研究员,编写函数实现ADX策略。函数接受数据帧df,ADX列名称adx_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def adx_strategy(df, adx_col='adx', inplace=False):
    """
    实现ADX策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含ADX指标数据的DataFrame,必须包含'adx_col'列。
    adx_col : str
        ADX指标的列名。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:ADX超过25
    df.loc[df[adx_col] > 25, 'signal'] = 1
    
    # 产生卖出信号:ADX低于25
    df.loc[df[adx_col] < 25, 'signal'] = -1
    
    return df

VWAP 指标

假设你是个高级程序员和量化研究员,编写函数实现 VWAP 指标。函数接受数据帧dfinplace参数控制是否原地更新dfdf包含四个列:open开盘价、high最高价、low最低价和close收盘价。所有指标都应当保存到df中,最后返回df

代码语言:javascript
复制
def vwap(df, vwap_col='vwap', inplace=False):
    """
    计算VWAP指标,并更新DataFrame。
    
    参数:
    df : DataFrame
        包含价格数据的DataFrame,必须包含'open', 'high', 'low', 'close', 'volume'列。
    window : int, optional
        滚动窗口的大小,默认为1。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        包含VWAP指标的新DataFrame(如果inplace为False)。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 计算VWAP
    df['vwap'] = (df['open'] + df['high'] + df['low'] + df['close']) / 4 * df['volume']
        
    return df

VWAP 策略

假设你是个高级程序员和量化研究员,编写函数实现VWAP策略。函数接受数据帧df,VWAP列名称vwap_colinplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df

代码语言:javascript
复制
def vwap_strategy(df, vwap_col='vwap', inplace=False):
    """
    实现VWAP策略,生成买卖信号。
    
    参数:
    df : DataFrame
        包含VWAP指标数据的DataFrame,必须包含'vwap_col'列。
    vwap_col : str
        VWAP指标的列名。
    inplace : bool, optional
        是否在原地更新DataFrame,默认为False。
    
    返回:
    df : DataFrame
        原始DataFrame,增加了一个名为'signal'的列,包含买卖信号。
    """
    
    # 复制DataFrame以避免修改原始数据
    if not inplace:
        df = df.copy()
    
    # 初始化信号列,默认为无操作
    df['signal'] = 0
    
    # 产生买入信号:价格突破VWAP
    df.loc[df['close'] > df[vwap_col], 'signal'] = 1
    
    # 产生卖出信号:价格跌破VWAP
    df.loc[df['close'] < df[vwap_col], 'signal'] = -1
    
    return df
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-05-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 双均线策略
  • 布林带指标
  • 布林带策略
  • MACD 指标
  • MACD 策略
  • RSI 指标
  • RSI 策略
  • KDJ 指标
  • KDJ 策略
  • CCI 指标
  • CCI 策略
  • OBV 指标
  • OBV 策略
  • ADX 指标
  • ADX 策略
  • VWAP 指标
  • VWAP 策略
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档