前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >KNN算法API

KNN算法API

作者头像
用户10950404
发布2024-07-30 13:24:40
700
发布2024-07-30 13:24:40
举报
文章被收录于专栏:人工智能

学习目标

1.K近邻算法

2.分类模型评估算法

3.K值选择

1.K近邻算法API

Sklearn API介绍

示例代码:

代码语言:javascript
复制
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

if __name__ == '__main__':
    # 1. 加载数据集  
    iris = load_iris() #通过iris.data 获取数据集中的特征值  iris.target获取目标值

    # 2. 数据标准化
    transformer = StandardScaler()
    x_ = transformer.fit_transform(iris.data) # iris.data 数据的特征值

    # 3. 模型训练
    estimator = KNeighborsClassifier(n_neighbors=3) # n_neighbors 邻居的数量,也就是Knn中的K值
    estimator.fit(x_, iris.target) # 调用fit方法 传入特征和目标进行模型训练

    # 4. 利用模型预测
    result = estimator.predict(x_) 
    print(result)

小结

1、sklearn中K近邻算法的对象:

代码语言:javascript
复制
from sklearn.neighbors import KNeighborsClassifier
 estimator = KNeighborsClassifier(n_neighbors=3)  # K的取值通过n_neighbors传递

K值也就是n_beighbors的选择尤为重要 ,下文我们会继续介绍

2、sklearn中大多数算法模型训练的API都是同一个套路

代码语言:javascript
复制
estimator = KNeighborsClassifier(n_neighbors=3) # 创建算法模型对象
estimator.fit(x_, iris.target)  # 调用fit方法训练模型
estimator.predict(x_)           # 用训练好的模型进行预测

3、sklearn中自带了几个学习数据集

  • 都封装在sklearn.datasets 这个包中
  • 加载数据后,通过data属性可以获取特征值,通过target属性可以获取目标值, 通过DESCR属性可以获取数据集的描述信息

2.分类模型评估方法

我们在建立模型时,少不了对数据的引用,接下来我们首先介绍数据划分及选样的方法

💡💡为什么要划分数据集呢? 结论:不能将所有数据集全部用于训练,为了能够评估模型的泛化能力,可以通过实验测试对学习器的泛化能力进行评估,进而做出选择。因此需要使用一个 "测试集" 来测试学习器对新样本的判别能力,以测试集上的 "测试误差" 作为泛化误差的近似。

2. 1留出法(简单交叉验证)

💡留出法 (hold-out) 将数据集 D 划分为两个互斥的集合,其中一个集合作为训练集 S,另一个作为测试集 T。

代码语言:javascript
复制
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import ShuffleSplit
from collections import Counter
from sklearn.datasets import load_iris


def test01():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))

    # 2. 留出法(随机分割)
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
    print('随机类别分割:', Counter(y_train), Counter(y_test))

    # 3. 留出法(分层分割)
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)
    print('分层类别分割:', Counter(y_train), Counter(y_test))


def test02():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 多次划分(随机分割)
    spliter = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for train, test in spliter.split(x, y):
        print('随机多次分割:', Counter(y[test]))

    print('*' * 40)

    # 3. 多次划分(分层分割)
    spliter = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for train, test in spliter.split(x, y):
        print('分层多次分割:', Counter(y[test]))


if __name__ == '__main__':
    test01()
    test02()

2.2交叉验证法

💡K-Fold交叉验证,将数据随机且均匀地分成k分,如上图所示(k为10),假设每份数据的标号为0-9

  • 第一次使用标号为0-8的共9份数据来做训练,而使用标号为9的这一份数据来进行测试,得到一个准确率
  • 第二次使用标记为1-9的共9份数据进行训练,而使用标号为0的这份数据进行测试,得到第二个准确率
  • 以此类推,每次使用9份数据作为训练,而使用剩下的一份数据进行测试
  • 共进行10次训练,最后模型的准确率为10次准确率的平均值
  • 这样可以避免了数据划分而造成的评估不准确的问题。
代码语言:javascript
复制
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from collections import Counter
from sklearn.datasets import load_iris

def test():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 随机交叉验证
    spliter = KFold(n_splits=5, shuffle=True, random_state=0)
    for train, test in spliter.split(x, y):
        print('随机交叉验证:', Counter(y[test]))

    print('*' * 40)

    # 3. 分层交叉验证
    spliter = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
    for train, test in spliter.split(x, y):
        print('分层交叉验证:', Counter(y[test]))


if __name__ == '__main__':
    test()

2.3留一法

💡 留一法( Leave-One-Out,简称LOO),即每次抽取一个样本做为测试集

代码语言:javascript
复制
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeavePOut
from sklearn.datasets import load_iris
from collections import Counter


def test01():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 留一法
    spliter = LeaveOneOut()
    for train, test in spliter.split(x, y):
        print('训练集:', len(train), '测试集:', len(test), test)

    print('*' * 40)

    # 3. 留P法
    spliter = LeavePOut(p=3)
    for train, test in spliter.split(x, y):
        print('训练集:', len(train), '测试集:', len(test), test)


if __name__ == '__main__':
    test01()

2.4自助法

💡每次随机从D中抽出一个样本,将其拷贝放入D,然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被抽到; 这个过程重复执行m次后,我们就得到了包含m个样本的数据集D′,这就是自助采样的结果。

代码语言:javascript
复制
import pandas as pd


if __name__ == '__main__':

    # 1. 构造数据集
    data = [[90, 2, 10, 40],
            [60, 4, 15, 45],
            [75, 3, 13, 46],
            [78, 2, 64, 22]]

    data = pd.DataFrame(data)
    print('数据集:\n',data)
    print('*' * 30)

    # 2. 产生训练集
    train = data.sample(frac=1, replace=True)
    print('训练集:\n', train)

    print('*' * 30)

    # 3. 产生测试集
    test = data.loc[data.index.difference(train.index)]
    print('测试集:\n', test)

我们得知了这几种数据划分的方法,但是哪一种划分得出的预测值是最好的呢?🔒️

2.5如何评估分类算法?

  • 利用训练好的模型使用测试集的特征值进行预测
  • 将预测结果和测试集的目标值比较,计算预测正确的百分比
  • 这个百分比就是准确率 accuracy, 准确率越高说明模型效果越好
代码语言:javascript
复制
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
#加载鸢尾花数据
X,y = datasets.load_iris(return_X_y = True)
#训练集 测试集划分
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
# 创建KNN分类器对象 近邻数为6
knn_clf = KNeighborsClassifier(n_neighbors=6)
#训练集训练模型
knn_clf.fit(X_train,y_train)
#使用训练好的模型进行预测
y_predict = knn_clf.predict(X_test)

计算准确率:

代码语言:javascript
复制
sum(y_predict==y_test)/y_test.shape[0]

💣️💣️sklearn封装了计算准确率的相关API:

代码语言:javascript
复制
#计算准确率
from sklearn.metrics import accuracy_score
#方式1:
accuracy_score(y_test,y_predict)
#方式2:
knn_classifier.score(X_test,y_test)

3.K值选择问题

1. K取不同值时带来的影响¶

举例:

  • 有两类不同的样本数据,分别用蓝颜色的小正方形和红色的小三角形表示,而图正中间有一个绿色的待判样本。
  • 问题:如何给这个绿色的圆分类?是判断为蓝色的小正方形还是红色的小三角形?
  • 方法:应用KNN找绿色的邻居,但一次性看多少个邻居呢(K取几合适)?

解决方案:

  • K=4,绿色圆圈最近的4个邻居,3红色和1个蓝,按少数服从多数,判定绿色样本与红色三角形属于同一类别
  • K=9,绿色圆圈最近的9个邻居,6红和3个蓝,判定绿色属于红色的三角形一类。

🐵有时候出现K值选择困难的问题

KNN算法的关键是什么?

答案一定是K值的选择,下图中K=3,属于红色三角形,K=5属于蓝色的正方形。这个时候就是K选择困难的时候。

2.GridSearchCV的用法

👋👋使用 scikit-learn 提供的 GridSearchCV 工具, 配合交叉验证法可以搜索参数组合.

代码语言:javascript
复制
# 1. 加载数据集
x, y = load_iris(return_X_y=True)

# 2. 分割数据集
x_train, x_test, y_train, y_test = \
    train_test_split(x, y, test_size=0.2, stratify=y, random_state=0)

# 3. 创建网格搜索对象
estimator = KNeighborsClassifier()
param_grid = {'n_neighbors': [1, 3, 5, 7]}
estimator = GridSearchCV(estimator, param_grid=param_grid, cv=5, verbose=0)
estimator.fit(x_train, y_train)

# 4. 打印最优参数
print('最优参数组合:', estimator.best_params_, '最好得分:', estimator.best_score_)

# 4. 测试集评估模型
print('测试集准确率:', estimator.score(x_test, y_test))

3.小结

KNN 算法中K值过大、过小都不好, 一般会取一个较小的值

GridSearchCV 工具可以用来寻找最优的模型超参数,可以用来做KNN中K值的选择

K近邻算法的优缺点:

  • 优点:简单,易于理解,容易实现
  • 缺点:算法复杂度高,结果对K取值敏感,容易受数据分布影响

本期主要介绍了KNN算法的API及分类划分的方法及评估,下一期我们将会引入案例更好的理解和巩固KNN算法,下期还将介绍距离的度量方法 👋👋

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-07-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 学习目标
    • 1.K近邻算法
      • 2.分类模型评估算法
        • 3.K值选择
        • 1.K近邻算法API
          • Sklearn API介绍
            • 小结
            • 2.分类模型评估方法
              • 2. 1留出法(简单交叉验证)
                • 2.2交叉验证法
                  • 2.3留一法
                    • 2.4自助法
                      • 2.5如何评估分类算法?
                      • 3.K值选择问题
                        • 1. K取不同值时带来的影响¶
                          • 2.GridSearchCV的用法
                            • 3.小结
                            相关产品与服务
                            腾讯云服务器利旧
                            云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
                            领券
                            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档