作者:HOS(安全风信子) 日期:2026-01-01 来源平台:GitHub 摘要: 本文深入探讨了 MCP v2.0 框架下的恶意 Tool 注入问题,构建了完整的 MCP 恶意 Tool 注入防护体系。通过真实代码示例和 Mermaid 图表,详细分析了 MCP 工具供应链攻击防护机制、动态工具行为分析引擎、MCP 工具签名验证体系的实现原理和最佳实践。本文引入了 MCP 工具供应链攻击防护机制、动态工具行为分析引擎、MCP 工具签名验证体系三个全新要素,旨在帮助开发者识别、分析和防御 MCP 恶意 Tool 注入攻击,构建更加安全、可靠的 MCP 系统。
随着 MCP v2.0 作为连接 LLM 与外部工具的标准化协议的广泛应用,MCP 系统面临的恶意 Tool 注入威胁越来越严重。恶意 Tool 注入是指攻击者通过各种手段将恶意工具注入到 MCP 系统中,从而执行恶意操作,如窃取数据、破坏系统、执行未授权操作等。2025 年以来,全球范围内发生了多起与 MCP 恶意 Tool 注入相关的安全事件:
这些事件凸显了 MCP 恶意 Tool 注入的严重性和危害性。恶意 Tool 注入可能导致以下后果:
MCP v2.0 框架下的恶意 Tool 注入具有以下特殊性:
本文将深入探讨 MCP v2.0 框架下的恶意 Tool 注入问题,构建完整的 MCP 恶意 Tool 注入防护体系。通过真实代码示例和 Mermaid 图表,详细讲解恶意 Tool 注入的原理、技术手段、防御策略,以及三个全新要素的实现细节。本文旨在帮助开发者:
防护方案 | 优势 | 劣势 | 适用场景 |
|---|---|---|---|
传统杀毒软件 | 成熟稳定,能够检测已知恶意软件 | 只能检测已知恶意软件,误报率高,无法适应 MCP 动态环境 | 传统桌面系统 |
沙箱隔离 | 能够隔离恶意软件的执行,减少危害 | 性能开销大,无法检测所有类型的恶意软件 | 高安全要求系统 |
应用白名单 | 只允许执行白名单中的软件,安全性高 | 维护成本高,灵活性差 | 封闭系统 |
MCP 恶意 Tool 注入防护 | 专门针对 MCP 设计,结合多种检测方法,支持动态环境 | 实现复杂,需要专业团队 | MCP v2.0 框架 |
MCP 恶意 Tool 注入的基本原理是攻击者通过各种手段将恶意工具注入到 MCP 系统中,从而执行恶意操作。恶意工具可以是完全伪造的工具,也可以是被篡改的合法工具。攻击者可以通过多种途径注入恶意工具,如直接上传、供应链攻击、社会工程学攻击等。
MCP 恶意 Tool 注入的技术手段主要包括以下几种:
MCP 恶意 Tool 注入的攻击流程通常包括以下步骤:

MCP 工具供应链攻击防护机制基于以下核心原则:
# mcp_supply_chain_protection.py
from typing import Dict, List, Optional
import logging
import hashlib
import os
from datetime import datetime
import requests
class ToolMetadata:
def __init__(self, tool_id: str, name: str, version: str,
developer: str, signature: str, checksum: str,
trusted: bool = False):
self.tool_id = tool_id
self.name = name
self.version = version
self.developer = developer
self.signature = signature
self.checksum = checksum
self.trusted = trusted
self.created_at = datetime.now()
self.updated_at = datetime.now()
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"tool_id": self.tool_id,
"name": self.name,
"version": self.version,
"developer": self.developer,
"signature": self.signature,
"checksum": self.checksum,
"trusted": self.trusted,
"created_at": self.created_at.isoformat(),
"updated_at": self.updated_at.isoformat()
}
class SupplyChainProtection:
def __init__(self, trusted_developers: List[str] = None,
trusted_repositories: List[str] = None):
self.tool_metadata = {}
self.trusted_developers = trusted_developers or []
self.trusted_repositories = trusted_repositories or []
self.logger = logging.getLogger("mcp_supply_chain_protection")
def register_tool(self, metadata: ToolMetadata):
"""注册工具元数据"""
self.tool_metadata[metadata.tool_id] = metadata
self.logger.info(f"Registered tool: {metadata.tool_id}, developer: {metadata.developer}")
def verify_tool_integrity(self, tool_id: str, tool_content: bytes) -> bool:
"""验证工具完整性"""
if tool_id not in self.tool_metadata:
self.logger.warning(f"Tool {tool_id} not found in metadata")
return False
# 计算工具内容的校验和
checksum = self._calculate_checksum(tool_content)
expected_checksum = self.tool_metadata[tool_id].checksum
if checksum != expected_checksum:
self.logger.warning(f"Tool {tool_id} integrity check failed: expected {expected_checksum}, got {checksum}")
return False
self.logger.info(f"Tool {tool_id} integrity check passed")
return True
def verify_tool_signature(self, tool_id: str, signature: str) -> bool:
"""验证工具签名"""
if tool_id not in self.tool_metadata:
self.logger.warning(f"Tool {tool_id} not found in metadata")
return False
expected_signature = self.tool_metadata[tool_id].signature
if signature != expected_signature:
self.logger.warning(f"Tool {tool_id} signature check failed: expected {expected_signature}, got {signature}")
return False
self.logger.info(f"Tool {tool_id} signature check passed")
return True
def verify_tool_source(self, tool_id: str, source: str) -> bool:
"""验证工具来源"""
metadata = self.tool_metadata.get(tool_id)
if not metadata:
self.logger.warning(f"Tool {tool_id} not found in metadata")
return False
# 检查开发者是否可信
if metadata.developer not in self.trusted_developers:
self.logger.warning(f"Tool {tool_id} developer {metadata.developer} not trusted")
return False
# 检查来源仓库是否可信
if source not in self.trusted_repositories:
self.logger.warning(f"Tool {tool_id} source {source} not trusted")
return False
self.logger.info(f"Tool {tool_id} source check passed")
return True
def verify_tool_chain(self, tool_id: str, tool_content: bytes,
signature: str, source: str) -> bool:
"""完整的工具供应链验证"""
self.logger.info(f"Starting supply chain verification for tool: {tool_id}")
# 1. 验证工具来源
if not self.verify_tool_source(tool_id, source):
return False
# 2. 验证工具签名
if not self.verify_tool_signature(tool_id, signature):
return False
# 3. 验证工具完整性
if not self.verify_tool_integrity(tool_id, tool_content):
return False
# 4. 标记工具为可信
self.tool_metadata[tool_id].trusted = True
self.tool_metadata[tool_id].updated_at = datetime.now()
self.logger.info(f"Tool {tool_id} supply chain verification passed")
return True
def _calculate_checksum(self, content: bytes) -> str:
"""计算内容的校验和"""
return hashlib.sha256(content).hexdigest()
def get_tool_metadata(self, tool_id: str) -> Optional[ToolMetadata]:
"""获取工具元数据"""
return self.tool_metadata.get(tool_id)
def get_all_metadata(self) -> List[Dict]:
"""获取所有工具元数据"""
return [metadata.to_dict() for metadata in self.tool_metadata.values()]
def get_trusted_tools(self) -> List[Dict]:
"""获取所有可信工具"""
return [metadata.to_dict() for metadata in self.tool_metadata.values() if metadata.trusted]
# 示例使用
if __name__ == "__main__":
# 配置日志
logging.basicConfig(level=logging.INFO)
# 创建供应链保护实例
scp = SupplyChainProtection(
trusted_developers=["trusted_dev_001", "trusted_dev_002"],
trusted_repositories=["https://trusted-repo.example.com", "https://github.com/trusted-org"]
)
# 注册工具元数据
tool_metadata = ToolMetadata(
tool_id="file_reader_001",
name="文件读取工具",
version="1.0.0",
developer="trusted_dev_001",
signature="valid_signature_001",
checksum="e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
)
scp.register_tool(tool_metadata)
# 验证工具完整性
tool_content = b"valid tool content"
integrity_ok = scp.verify_tool_integrity("file_reader_001", tool_content)
print(f"Integrity check: {'OK' if integrity_ok else 'FAILED'}")
# 验证工具签名
signature_ok = scp.verify_tool_signature("file_reader_001", "valid_signature_001")
print(f"Signature check: {'OK' if signature_ok else 'FAILED'}")
# 验证工具来源
source_ok = scp.verify_tool_source("file_reader_001", "https://trusted-repo.example.com")
print(f"Source check: {'OK' if source_ok else 'FAILED'}")
# 完整的工具供应链验证
full_ok = scp.verify_tool_chain(
tool_id="file_reader_001",
tool_content=tool_content,
signature="valid_signature_001",
source="https://trusted-repo.example.com"
)
print(f"Full verification: {'OK' if full_ok else 'FAILED'}")
# 获取所有可信工具
trusted_tools = scp.get_trusted_tools()
print(f"\nTrusted tools: {len(trusted_tools)}")
for tool in trusted_tools:
print(f"- {tool['name']} (ID: {tool['tool_id']})")动态工具行为分析引擎基于机器学习技术,对 MCP 工具的行为进行实时分析,检测恶意工具。其核心原理包括:
# mcp_tool_behavior_analyzer.py
from typing import Dict, List, Tuple
import logging
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import joblib
from datetime import datetime
class ToolBehavior:
def __init__(self, tool_id: str, actions: List[Dict]):
self.tool_id = tool_id
self.actions = actions
self.timestamp = datetime.now()
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"tool_id": self.tool_id,
"actions": self.actions,
"timestamp": self.timestamp.isoformat()
}
class BehaviorAnalyzer:
def __init__(self, model_path: str = None):
# 创建或加载机器学习模型
if model_path:
self.model = joblib.load(model_path)
else:
self.model = Pipeline([
("scaler", StandardScaler()),
("clf", RandomForestClassifier(n_estimators=100, random_state=42))
])
self.logger = logging.getLogger("mcp_tool_behavior_analyzer")
def extract_features(self, behavior: ToolBehavior) -> np.ndarray:
"""从工具行为中提取特征"""
features = []
# 统计不同类型的系统调用数量
syscall_counts = self._count_syscalls(behavior.actions)
features.extend(syscall_counts.values())
# 统计网络连接数量
network_count = self._count_network_connections(behavior.actions)
features.append(network_count)
# 统计文件操作数量
file_operations = self._count_file_operations(behavior.actions)
features.extend(file_operations.values())
# 统计进程创建数量
process_count = self._count_process_creations(behavior.actions)
features.append(process_count)
# 统计执行时间
execution_time = self._calculate_execution_time(behavior.actions)
features.append(execution_time)
return np.array(features).reshape(1, -1)
def train_model(self, training_data: List[Tuple[ToolBehavior, bool]]):
"""训练机器学习模型"""
self.logger.info(f"Training model with {len(training_data)} samples")
# 准备训练数据
X = []
y = []
for behavior, is_malicious in training_data:
features = self.extract_features(behavior)
X.append(features)
y.append(1 if is_malicious else 0)
# 合并特征
X_combined = np.vstack(X)
# 训练模型
self.model.fit(X_combined, y)
self.logger.info("Model training completed")
def save_model(self, model_path: str):
"""保存机器学习模型"""
joblib.dump(self.model, model_path)
self.logger.info(f"Model saved to {model_path}")
def analyze_behavior(self, behavior: ToolBehavior) -> Dict:
"""分析工具行为,检测恶意行为"""
self.logger.info(f"Analyzing behavior for tool: {behavior.tool_id}")
# 提取特征
features = self.extract_features(behavior)
# 预测是否为恶意行为
prediction = self.model.predict(features)[0]
is_malicious = prediction == 1
# 计算置信度
probabilities = self.model.predict_proba(features)[0]
confidence = probabilities[prediction]
# 生成分析结果
result = {
"tool_id": behavior.tool_id,
"is_malicious": is_malicious,
"confidence": float(confidence),
"timestamp": datetime.now().isoformat(),
"actions_analyzed": len(behavior.actions)
}
if is_malicious:
self.logger.warning(f"Malicious behavior detected for tool {behavior.tool_id}, confidence: {confidence:.2f}")
else:
self.logger.info(f"Tool {behavior.tool_id} behavior analysis passed, confidence: {confidence:.2f}")
return result
def _count_syscalls(self, actions: List[Dict]) -> Dict:
"""统计不同类型的系统调用数量"""
syscall_types = ["read", "write", "open", "close", "exec", "fork", "kill", "socket", "connect"]
counts = {syscall: 0 for syscall in syscall_types}
for action in actions:
if action["type"] == "syscall":
syscall = action["name"]
if syscall in counts:
counts[syscall] += 1
return counts
def _count_network_connections(self, actions: List[Dict]) -> int:
"""统计网络连接数量"""
count = 0
for action in actions:
if action["type"] == "network":
count += 1
return count
def _count_file_operations(self, actions: List[Dict]) -> Dict:
"""统计文件操作数量"""
file_ops = ["read", "write", "create", "delete", "rename"]
counts = {op: 0 for op in file_ops}
for action in actions:
if action["type"] == "file":
op = action["operation"]
if op in counts:
counts[op] += 1
return counts
def _count_process_creations(self, actions: List[Dict]) -> int:
"""统计进程创建数量"""
count = 0
for action in actions:
if action["type"] == "syscall" and action["name"] in ["fork", "exec", "clone"]:
count += 1
return count
def _calculate_execution_time(self, actions: List[Dict]) -> float:
"""计算执行时间"""
if not actions:
return 0.0
# 假设每个 action 包含 timestamp 字段
timestamps = [action.get("timestamp", 0.0) for action in actions]
if not timestamps:
return 0.0
start_time = min(timestamps)
end_time = max(timestamps)
return end_time - start_time
# 示例使用
if __name__ == "__main__":
# 配置日志
logging.basicConfig(level=logging.INFO)
# 创建行为分析器
analyzer = BehaviorAnalyzer()
# 模拟正常工具行为
normal_behavior = ToolBehavior(
tool_id="normal_tool_001",
actions=[
{"type": "syscall", "name": "open", "timestamp": 1.0},
{"type": "syscall", "name": "read", "timestamp": 1.1},
{"type": "file", "operation": "read", "path": "/data/test.txt", "timestamp": 1.2},
{"type": "syscall", "name": "close", "timestamp": 1.3}
]
)
# 模拟恶意工具行为
malicious_behavior = ToolBehavior(
tool_id="malicious_tool_001",
actions=[
{"type": "syscall", "name": "open", "timestamp": 2.0},
{"type": "syscall", "name": "read", "timestamp": 2.1},
{"type": "file", "operation": "read", "path": "/etc/passwd", "timestamp": 2.2},
{"type": "network", "operation": "connect", "address": "malicious.example.com", "port": 443, "timestamp": 2.3},
{"type": "syscall", "name": "write", "timestamp": 2.4},
{"type": "network", "operation": "send", "data": "sensitive data", "timestamp": 2.5},
{"type": "syscall", "name": "close", "timestamp": 2.6}
]
)
# 准备训练数据
training_data = [
(normal_behavior, False),
(malicious_behavior, True)
]
# 训练模型
analyzer.train_model(training_data)
# 分析正常工具行为
normal_result = analyzer.analyze_behavior(normal_behavior)
print(f"Normal tool analysis: is_malicious={normal_result['is_malicious']}, confidence={normal_result['confidence']:.2f}")
# 分析恶意工具行为
malicious_result = analyzer.analyze_behavior(malicious_behavior)
print(f"Malicious tool analysis: is_malicious={malicious_result['is_malicious']}, confidence={malicious_result['confidence']:.2f}")
# 保存模型
model_path = "tool_behavior_model.joblib"
analyzer.save_model(model_path)
print(f"Model saved to {model_path}")MCP 工具签名验证体系基于公钥密码学,为 MCP 工具提供数字签名验证功能,确保只有经过验证的工具才能被执行。其核心原理包括:
# mcp_tool_signature.py
from typing import Dict, List, Optional
import logging
from datetime import datetime
import hashlib
import rsa
class ToolCertificate:
def __init__(self, cert_id: str, developer_id: str, public_key: bytes,
issued_at: datetime, expires_at: datetime, issuer: str):
self.cert_id = cert_id
self.developer_id = developer_id
self.public_key = public_key
self.issued_at = issued_at
self.expires_at = expires_at
self.issuer = issuer
def is_valid(self) -> bool:
"""检查证书是否有效"""
now = datetime.now()
return self.issued_at <= now <= self.expires_at
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"cert_id": self.cert_id,
"developer_id": self.developer_id,
"public_key": self.public_key.hex(),
"issued_at": self.issued_at.isoformat(),
"expires_at": self.expires_at.isoformat(),
"issuer": self.issuer,
"is_valid": self.is_valid()
}
class ToolSignatureSystem:
def __init__(self):
self.certificates = {}
self.logger = logging.getLogger("mcp_tool_signature")
def generate_key_pair(self, bits: int = 2048) -> Tuple[rsa.PrivateKey, rsa.PublicKey]:
"""生成密钥对"""
self.logger.info(f"Generating key pair with {bits} bits")
(public_key, private_key) = rsa.newkeys(bits)
return private_key, public_key
def create_certificate(self, developer_id: str, public_key: rsa.PublicKey,
validity_days: int = 365) -> ToolCertificate:
"""创建工具开发者证书"""
now = datetime.now()
expires_at = now + timedelta(days=validity_days)
cert = ToolCertificate(
cert_id=f"cert_{datetime.now().timestamp()}",
developer_id=developer_id,
public_key=public_key.save_pkcs1(),
issued_at=now,
expires_at=expires_at,
issuer="MCP Certificate Authority"
)
self.certificates[cert.cert_id] = cert
self.logger.info(f"Created certificate for developer: {developer_id}, cert_id: {cert.cert_id}")
return cert
def sign_tool(self, tool_content: bytes, private_key: rsa.PrivateKey) -> bytes:
"""使用私钥对工具进行签名"""
# 计算工具内容的哈希值
tool_hash = hashlib.sha256(tool_content).digest()
# 生成签名
signature = rsa.sign(tool_hash, private_key, 'SHA-256')
self.logger.info("Tool signed successfully")
return signature
def verify_tool_signature(self, tool_content: bytes, signature: bytes,
public_key: rsa.PublicKey) -> bool:
"""使用公钥验证工具签名"""
try:
# 计算工具内容的哈希值
tool_hash = hashlib.sha256(tool_content).digest()
# 验证签名
rsa.verify(tool_hash, signature, public_key)
self.logger.info("Tool signature verification passed")
return True
except rsa.VerificationError as e:
self.logger.warning(f"Tool signature verification failed: {e}")
return False
def verify_tool_with_certificate(self, tool_content: bytes, signature: bytes,
developer_id: str) -> bool:
"""使用证书验证工具签名"""
# 查找开发者的有效证书
valid_certs = [cert for cert in self.certificates.values()
if cert.developer_id == developer_id and cert.is_valid()]
if not valid_certs:
self.logger.warning(f"No valid certificates found for developer: {developer_id}")
return False
# 使用第一个有效证书验证签名
cert = valid_certs[0]
public_key = rsa.PublicKey.load_pkcs1(cert.public_key)
return self.verify_tool_signature(tool_content, signature, public_key)
def get_certificate(self, cert_id: str) -> Optional[ToolCertificate]:
"""获取证书"""
return self.certificates.get(cert_id)
def get_developer_certificates(self, developer_id: str) -> List[ToolCertificate]:
"""获取开发者的所有证书"""
return [cert for cert in self.certificates.values() if cert.developer_id == developer_id]
def get_valid_certificates(self) -> List[Dict]:
"""获取所有有效证书"""
return [cert.to_dict() for cert in self.certificates.values() if cert.is_valid()]
# 示例使用
if __name__ == "__main__":
from datetime import timedelta
# 配置日志
logging.basicConfig(level=logging.INFO)
# 创建工具签名系统
sig_system = ToolSignatureSystem()
# 生成密钥对
private_key, public_key = sig_system.generate_key_pair()
# 创建证书
cert = sig_system.create_certificate("trusted_dev_001", public_key)
# 模拟工具内容
tool_content = b"valid tool content"
# 对工具进行签名
signature = sig_system.sign_tool(tool_content, private_key)
print(f"Generated signature: {signature.hex()[:20]}...")
# 验证工具签名
verify_result = sig_system.verify_tool_signature(tool_content, signature, public_key)
print(f"Signature verification result: {'OK' if verify_result else 'FAILED'}")
# 使用证书验证工具签名
verify_with_cert_result = sig_system.verify_tool_with_certificate(
tool_content, signature, "trusted_dev_001"
)
print(f"Certificate-based verification result: {'OK' if verify_with_cert_result else 'FAILED'}")
# 获取所有有效证书
valid_certs = sig_system.get_valid_certificates()
print(f"\nValid certificates: {len(valid_certs)}")
for c in valid_certs:
print(f"- Cert ID: {c['cert_id']}, Developer: {c['developer_id']}")MCP 恶意 Tool 注入防护系统集成了上述三个全新要素,构建了完整的防护体系。系统总体设计如下:

# mcp_malicious_tool_protection.py
from typing import Dict, List, Optional, Tuple
import logging
from datetime import datetime
# 导入前面实现的模块
from mcp_supply_chain_protection import SupplyChainProtection, ToolMetadata
from mcp_tool_behavior_analyzer import BehaviorAnalyzer, ToolBehavior
from mcp_tool_signature import ToolSignatureSystem
class MaliciousToolProtectionSystem:
def __init__(self):
# 初始化各个防护组件
self.supply_chain_protection = SupplyChainProtection(
trusted_developers=["trusted_dev_001", "trusted_dev_002"],
trusted_repositories=["https://trusted-repo.example.com", "https://github.com/trusted-org"]
)
self.behavior_analyzer = BehaviorAnalyzer()
self.signature_system = ToolSignatureSystem()
self.logger = logging.getLogger("mcp_malicious_tool_protection")
self.logger.info("Malicious Tool Protection System initialized")
def initialize(self):
"""初始化系统"""
self.logger.info("Initializing Malicious Tool Protection System")
# 这里可以添加初始化逻辑,如加载证书、训练模型等
self.logger.info("Malicious Tool Protection System initialized successfully")
def register_tool(self, tool_metadata: Dict):
"""注册工具"""
# 创建工具元数据对象
metadata = ToolMetadata(
tool_id=tool_metadata["tool_id"],
name=tool_metadata["name"],
version=tool_metadata["version"],
developer=tool_metadata["developer"],
signature=tool_metadata["signature"],
checksum=tool_metadata["checksum"]
)
# 注册到供应链保护组件
self.supply_chain_protection.register_tool(metadata)
self.logger.info(f"Registered tool: {tool_metadata['tool_id']}")
def verify_tool(self, tool_id: str, tool_content: bytes, signature: str,
source: str, developer_id: str) -> Dict:
"""验证工具"""
self.logger.info(f"Verifying tool: {tool_id}, developer: {developer_id}")
verification_results = {
"tool_id": tool_id,
"timestamp": datetime.now().isoformat(),
"results": {
"signature_verification": False,
"integrity_verification": False,
"source_verification": False,
"supply_chain_verification": False,
"certificate_verification": False
},
"is_verification_passed": False
}
# 1. 验证工具签名(使用公钥)
# 这里假设我们已经获取了开发者的公钥
# verification_results["results"]["signature_verification"] = self.signature_system.verify_tool_signature(...)
# 2. 验证工具完整性
verification_results["results"]["integrity_verification"] = self.supply_chain_protection.verify_tool_integrity(
tool_id, tool_content
)
# 3. 验证工具来源
verification_results["results"]["source_verification"] = self.supply_chain_protection.verify_tool_source(
tool_id, source
)
# 4. 验证工具供应链
verification_results["results"]["supply_chain_verification"] = self.supply_chain_protection.verify_tool_chain(
tool_id, tool_content, signature, source
)
# 5. 验证工具证书
verification_results["results"]["certificate_verification"] = self.signature_system.verify_tool_with_certificate(
tool_content, bytes.fromhex(signature), developer_id
)
# 计算总体验证结果
all_passed = all(verification_results["results"].values())
verification_results["is_verification_passed"] = all_passed
if all_passed:
self.logger.info(f"Tool {tool_id} verification passed")
else:
self.logger.warning(f"Tool {tool_id} verification failed: {verification_results['results']}")
return verification_results
def analyze_tool_behavior(self, tool_id: str, actions: List[Dict]) -> Dict:
"""分析工具行为"""
self.logger.info(f"Analyzing behavior for tool: {tool_id}")
# 创建工具行为对象
behavior = ToolBehavior(tool_id=tool_id, actions=actions)
# 分析工具行为
analysis_result = self.behavior_analyzer.analyze_behavior(behavior)
return analysis_result
def protect_tool_call(self, tool_id: str, tool_content: bytes, signature: str,
source: str, developer_id: str) -> Dict:
"""完整的工具调用保护流程"""
self.logger.info(f"Protecting tool call: {tool_id}")
# 1. 验证工具
verification_result = self.verify_tool(tool_id, tool_content, signature, source, developer_id)
if not verification_result["is_verification_passed"]:
return {
"status": "blocked",
"reason": "tool_verification_failed",
"verification_result": verification_result,
"behavior_analysis_result": None
}
# 2. 这里可以添加行为分析逻辑
# 在实际系统中,行为分析通常是在工具执行过程中进行的
# 这里简化处理,返回一个空的行为分析结果
behavior_analysis_result = {"is_malicious": False, "confidence": 0.99}
if behavior_analysis_result["is_malicious"]:
return {
"status": "blocked",
"reason": "malicious_behavior_detected",
"verification_result": verification_result,
"behavior_analysis_result": behavior_analysis_result
}
# 3. 允许工具执行
return {
"status": "allowed",
"reason": "tool_verified_and_behaved_normally",
"verification_result": verification_result,
"behavior_analysis_result": behavior_analysis_result
}
def get_protection_status(self) -> Dict:
"""获取防护系统状态"""
status = {
"timestamp": datetime.now().isoformat(),
"components": {
"supply_chain_protection": "active",
"behavior_analyzer": "active",
"signature_system": "active"
},
"statistics": {
"trusted_tools": len(self.supply_chain_protection.get_trusted_tools()),
"registered_tools": len(self.supply_chain_protection.get_all_metadata()),
"valid_certificates": len(self.signature_system.get_valid_certificates())
}
}
return status
# 示例使用
if __name__ == "__main__":
# 配置日志
logging.basicConfig(level=logging.INFO)
# 创建恶意工具防护系统
protection_system = MaliciousToolProtectionSystem()
protection_system.initialize()
# 注册工具
tool_metadata = {
"tool_id": "file_reader_001",
"name": "文件读取工具",
"version": "1.0.0",
"developer": "trusted_dev_001",
"signature": "valid_signature_001",
"checksum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
}
protection_system.register_tool(tool_metadata)
# 模拟工具内容
tool_content = b"valid tool content"
# 保护工具调用
protection_result = protection_system.protect_tool_call(
tool_id="file_reader_001",
tool_content=tool_content,
signature="valid_signature_001",
source="https://trusted-repo.example.com",
developer_id="trusted_dev_001"
)
print(f"\nTool protection result: {protection_result['status']}")
print(f"Reason: {protection_result['reason']}")
# 分析工具行为
actions = [
{"type": "syscall", "name": "open", "timestamp": 1.0},
{"type": "syscall", "name": "read", "timestamp": 1.1},
{"type": "file", "operation": "read", "path": "/data/test.txt", "timestamp": 1.2},
{"type": "syscall", "name": "close", "timestamp": 1.3}
]
behavior_result = protection_system.analyze_tool_behavior("file_reader_001", actions)
print(f"\nTool behavior analysis result:")
print(f" Is malicious: {behavior_result['is_malicious']}")
print(f" Confidence: {behavior_result['confidence']:.2f}")
# 获取防护系统状态
status = protection_system.get_protection_status()
print(f"\nProtection system status:")
print(f" Timestamp: {status['timestamp']}")
print(f" Components: {status['components']}")
print(f" Statistics: {status['statistics']}")方案类型 | 优势 | 劣势 | 适用场景 |
|---|---|---|---|
传统杀毒软件 | 成熟稳定,能够检测已知恶意软件,部署成本低 | 只能检测已知恶意软件,误报率高,无法适应 MCP 动态环境 | 传统桌面系统,个人电脑 |
沙箱隔离 | 能够隔离恶意软件的执行,减少危害,安全性高 | 性能开销大,无法检测所有类型的恶意软件,实现复杂 | 高安全要求系统,如金融、政府系统 |
应用白名单 | 只允许执行白名单中的软件,安全性高,误报率低 | 维护成本高,灵活性差,无法适应快速变化的环境 | 封闭系统,如工业控制系统 |
行为分析 | 能够检测未知恶意软件,适应性强 | 实现复杂,需要专业团队,误报率较高 | 大规模企业系统,云环境 |
MCP 恶意 Tool 注入防护 | 专门针对 MCP 设计,结合多种检测方法,支持动态环境,实时防护 | 实现复杂,需要专业团队,部署成本较高 | MCP v2.0 框架 |
方案类型 | 优势 | 劣势 | 适用场景 |
|---|---|---|---|
手动审查 | 能够深入分析软件,发现复杂漏洞 | 耗时耗力,成本高,无法应对大规模软件供应链 | 关键软件,少量软件审查 |
自动化扫描 | 快速高效,能够处理大规模软件供应链 | 只能检测已知漏洞,误报率高 | 大规模软件供应链,CI/CD 流程 |
数字签名 | 能够验证软件的完整性和来源,安全性高 | 实现复杂,需要建立完整的签名体系 | 企业级软件,开源软件 |
MCP 工具供应链防护 | 专门针对 MCP 工具设计,结合多种验证方法,支持动态环境 | 实现复杂,需要专业团队 | MCP v2.0 框架 |
方案类型 | 优势 | 劣势 | 适用场景 |
|---|---|---|---|
静态分析 | 快速高效,能够检测已知恶意软件特征 | 只能检测已知特征,无法检测未知恶意软件 | 大规模软件扫描,快速检测 |
动态分析 | 能够检测未知恶意软件,适应性强 | 性能开销大,实现复杂 | 高安全要求系统 |
行为分析 | 能够检测未知恶意软件的行为模式,适应性强 | 误报率较高,需要大量训练数据 | 实时监测系统,云环境 |
MCP 动态工具行为分析 | 专门针对 MCP 工具设计,实时分析,自适应学习 | 实现复杂,需要专业团队,训练成本高 | MCP v2.0 框架 |
风险类型 | 缓解策略 |
|---|---|
误报风险 | 1. 优化机器学习模型,减少误报2. 实现误报反馈机制,持续改进模型3. 提供误报排除功能,允许管理员手动调整4. 结合多种检测方法,提高检测的准确性 |
性能开销 | 1. 优化防护机制,减少性能影响2. 采用异步处理,降低对主流程的影响3. 实现可配置的防护级别,允许按需调整4. 对高频操作进行优化,减少性能开销 |
复杂性增加 | 1. 采用模块化设计,降低系统复杂性2. 提供清晰的文档和 API,便于使用和维护3. 实现自动化部署和配置,减少手动操作4. 建立完善的监控和告警机制,便于问题定位和解决 |
绕过风险 | 1. 定期进行安全评估和渗透测试,发现防护机制的漏洞2. 持续更新防护机制,适应新的攻击技术和手段3. 结合多种防护方法,提高防护的全面性4. 建立威胁情报共享机制,及时获取最新的攻击信息 |
供应链风险 | 1. 对防护系统本身进行严格的安全审查和测试2. 建立防护系统的供应链安全管理机制3. 采用开源组件时,进行严格的安全审查4. 定期更新防护系统的组件,修复已知漏洞 |
适应性风险 | 1. 建立威胁情报收集和分析机制,及时了解新的攻击技术和手段2. 实现自适应学习机制,不断更新防护模型和规则3. 定期进行安全演练,测试防护机制的有效性4. 与安全社区保持密切联系,获取最新的安全信息 |
参考链接: