第一次在这里提问时,我会尽量明确--但如果我应该提供更多的信息,请让我知道!其次,对于某些人来说,这是一个很容易解决的长question...hopefully ;)!因此,使用"R",我基于一些论文对多变量GARCH模型进行建模(Manera等人。2012)。
我在均值方程中对具有外部回归变量的常量条件相关(CCC)和动态条件相关(DCC)模型进行建模;对于具有外部回归变量的单变量GARCH,使用"R“版本3.0.1和"rugarch”软件包1.2-2,对于CCC/DCC模型使用"ccgarch“软件包(版本0.2.0-2)。(我目前正在研究"rmgarch“包-但它似乎只适用于DCC,我也需要CCC模型。)
我的模型的均值方程有问题。在我上面提到的文章中,CCC和DCC模型之间的均值方程的参数估计发生了变化!我不知道在R..。(目前,看看Google,看看Tsay的书“金融时间序列分析”和Engle的书“预测相关性”来找出我的错误)
我所说的“我的均值方程不会在CCC和DCC模型之间改变”的意思是:我用rugarch软件包为我的n=5时间序列指定了单变量GARCH。然后,我使用GARCH (ARCH + GARCH术语)的估计参数,并将它们用于CCC和DCC函数"eccc.sim()“和"dcc.sim()”。然后,从eccc.estimation()和dcc.estimation()函数中,我可以检索方差方程和相关矩阵的估计值。但对于均值方程不是这样。
我只发布了单变量模型和CCC模型的R-code (可重现的和我原来的)。感谢您阅读我的帖子!
注意:在下面的代码中,"data.repl“是dim 843x22 (9日商品回报系列和解释变量系列)的"zoo”对象。多变量GARCH仅适用于5个系列。
可重现代码:
# libraries:
library(rugarch)
library(ccgarch)
library(quantmod)
# Creating fake data:
dataRegr <- matrix(rep(rnorm(3149, 11, 1),1), ncol=1, nrow=3149)
dataFuelsLag1 <- matrix(rep(rnorm(3149, 24, 8),2), ncol=2, nrow=3149)
#S&P 500 via quantmod and Yahoo Finance
T0 <- "2000-06-23"
T1 <- "2012-12-31"
getSymbols("^GSPC", src="yahoo", from=T0, to=T1)
sp500.close <- GSPC[,"GSPC.Close"],
getSymbols("UBS", src="yahoo", from=T0, to=T1)
ubs.close <- UBS[,"UBS.Close"]
dataReplic <- merge(sp500.close, ubs.close, all=TRUE)
dataReplic[which(is.na(dataReplic[,2])),2] <- 0 #replace NA
### (G)ARCH modelling ###
#########################
# External regressors: macrovariables and all fuels+biofuel Working's T index
ext.regr.ext <- dataRegr
regre.fuels <- cbind(dataFuelsLag1, dataRegr)
### spec of GARCH(1,1) spec with AR(1) ###
garch11.fuels <- as.list(1:2)
for(i in 1:2){
garch11.fuels[[i]] <- ugarchspec(mean.model = list(armaOrder=c(1,0),
external.regressors = as.matrix(regre.fuels[,-i])))
}
### fit of GARCH(1,1) AR(1) ###
garch11.fuels.fit <- as.list(1:2)
for(i in 1:2){
garch11.fuels.fit[[i]] <- ugarchfit(garch11.fuels[[i]], dataReplic[,i])
}
##################################################################
#### CCC fuels: with external regression in the mean eqaution ####
##################################################################
nObs <- length(data.repl[-1,1])
coef.unlist <- sapply(garch11.fuels.fit, coef)
cccFuels.a <- rep(0.1, 2)
cccFuels.A <- diag(coef.unlist[6,])
cccFuels.B <- diag(coef.unlist[7, ])
cccFuels.R <- corr.test(data.repl[,fuels.ind], data.repl[,fuels.ind])$r
# model=extended (Jeantheau (1998))
ccc.fuels.sim <- eccc.sim(nobs = nObs, a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R, model="extended")
ccc.fuels.eps <- ccc.fuels.sim$eps
ccc.fuels.est <- eccc.estimation(a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R,
dvar=ccc.fuels.eps, model="extended")
ccc.fuels.condCorr <- round(corr.test(ccc.fuels.est$std.resid,
ccc.fuels.est$std.resid)$r,digits=3)
我的原始代码:
### (G)ARCH modelling ###
#########################
# External regressors: macrovariables and all fuels+biofuel Working's T index
ext.regr.ext <- as.matrix(data.repl[-1,c(10:13, 16, 19:22)])
regre.fuels <- cbind(fuel.lag1, ext.regr.ext) #fuel.lag1 is the pre-lagged series
### spec of GARCH(1,1) spec with AR(1) ###
garch11.fuels <- as.list(1:5)
for(i in 1:5){
garch11.fuels[[i]] <- ugarchspec(mean.model = list(armaOrder=c(1,0),
external.regressors = as.matrix(regre.fuels[,-i])))
}# regre.fuels[,-i] => "-i" because I model an AR(1) for each mean equation
### fit of GARCH(1,1) AR(1) ###
garch11.fuels.fit <- as.list(1:5)
for(i in 1:5){
j <- i
if(j==5){j <- 7} #because 5th "fuels" is actually column #7 in data.repl
garch11.fuels.fit[[i]] <- ugarchfit(garch11.fuels[[i]], as.matrix(data.repl[-1,j])))
}
#fuelsLag1.names <- paste(cmdty.names[fuels.ind], "(-1)")
fuelsLag1.names <- cmdty.names[fuels.ind]
rowNames.ext <- c("Constant", fuelsLag1.names, "Working's T Gasoline", "Working's T Heating Oil",
"Working's T Natural Gas", "Working's T Crude Oil",
"Working's T Soybean Oil", "Junk Bond", "T-bill",
"SP500", "Exch.Rate")
ic.n <- c("Akaike", "Bayes")
garch11.ext.univSpec <- univ.spec(garch11.fuels.fit, ols.fit.ext, rowNames.ext,
rowNum=c(1:15), colNames=cmdty.names[fuels.ind],
ccc=TRUE)
##################################################################
#### CCC fuels: with external regression in the mean eqaution ####
##################################################################
# From my GARCH(1,1)-AR(1) model, I extract ARCH and GARCH
# in order to model a CCC GARCH model:
nObs <- length(data.repl[-1,1])
coef.unlist <- sapply(garch11.fuels.fit, coef)
cccFuels.a <- rep(0.1, length(fuels.ind))
cccFuels.A <- diag(coef.unlist[17,])
cccFuels.B <- diag(coef.unlist[18, ])
#based on Engle(2009) book, page 31:
cccFuels.R <- corr.test(data.repl[,fuels.ind], data.repl[,fuels.ind])$r
# model=extended (Jeantheau (1998))
# "allow the squared errors and variances of the series to affect
# the dynamics of the individual conditional variances
ccc.fuels.sim <- eccc.sim(nobs = nObs, a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R, model="extended")
ccc.fuels.eps <- ccc.fuels.sim$eps
ccc.fuels.est <- eccc.estimation(a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R,
dvar=ccc.fuels.eps, model="extended")
ccc.fuels.condCorr <- round(corr.test(ccc.fuels.est$std.resid,
ccc.fuels.est$std.resid)$r,digits=3)
colnames(ccc.fuels.condCorr) <- cmdty.names[fuels.ind]
rownames(ccc.fuels.condCorr) <- cmdty.names[fuels.ind]
lowerTri(ccc.fuels.condCorr, rep=NA)
发布于 2013-06-01 17:23:03
发布于 2021-08-09 07:55:41
好吧,我希望现在还来得及。这是我从rmgarch
手册中找到的:“CCC模型是使用静态GARCH copula (正常)模型计算的”。
https://stackoverflow.com/questions/16874375
复制相似问题