首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从pandas dataframe中提取与月-日列表对应的行

,可以使用以下步骤:

  1. 首先,确保你已经导入了pandas库,并将数据加载到一个dataframe中。
代码语言:txt
复制
import pandas as pd

# 加载数据到dataframe
df = pd.read_csv('data.csv')
  1. 接下来,创建一个包含月-日列表的变量,例如:
代码语言:txt
复制
dates = ['01-01', '02-14', '03-08', '12-25']
  1. 然后,使用pandas的字符串处理功能,将dataframe中的日期列转换为月-日格式的字符串。假设日期列名为"date":
代码语言:txt
复制
df['date'] = pd.to_datetime(df['date']).dt.strftime('%m-%d')
  1. 最后,使用isin()方法筛选出与月-日列表对应的行:
代码语言:txt
复制
filtered_df = df[df['date'].isin(dates)]

这样,filtered_df就是包含与月-日列表对应的行的新dataframe。

对于这个问题,腾讯云没有特定的产品或链接与之相关。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas vs Spark:获取指定列的N种方式

当方括号内用一个列名组成的列表时,则意味着提取结果是一个DataFrame子集; df.loc[:, 'A']:即通过定位符loc来提取,其中逗号前面用于定位目标行,此处用:即表示对行不限定;逗号后面用于定位目标列...,此处用单个列名即表示提取单列,提取结果为该列对应的Series,若是用一个列名组成的列表,则表示提取多列得到一个DataFrame子集; df.iloc[:, 0]:即通过索引定位符iloc实现,与loc...类似,只不过iloc中传入的为整数索引形式,且索引从0开始;仍与loc类似,此处传入单个索引整数,若传入多个索引组成的列表,则仍然提取得到一个DataFrame子集。...:Spark中的DataFrame每一列的类型为Column、行为Row,而Pandas中的DataFrame则无论是行还是列,都是一个Series;Spark中DataFrame有列名,但没有行索引,...在Spark中,提取特定列也支持多种实现,但与Pandas中明显不同的是,在Spark中无论是提取单列还是提取单列衍生另外一列,大多还是用于得到一个DataFrame,而不仅仅是得到该列的Column类型

11.5K20

Pandas笔记

DataFrame具有以下特点: 列和列之间可以是不同的类型 :不同的列的数据类型可以不同 大小可变 (扩容) 标记轴(行级索引 和 列级索引) 针对行与列进行轴向统计(水平,垂直) import pandas...as pd # 创建一个空的DataFrame df = pd.DataFrame() print(df) # 从列表创建DataFrame data = [1,2,3,4,5] # 一维列表,...df2) print(df) 行删除 使用索引标签从DataFrame中删除或删除行。...的行 df = df.drop(0) print(df) 修改DataFrame中的数据 (访问) 更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据。...,因为底层有赋值的过程 # 如果通过行找列,因为底层没有赋值的过程,所以没有效果,不会修改成功 ⭐️复合索引 DataFrame的行级索引与列级索引都可以设置为复合索引,表示从不同的角度记录数据。

7.7K10
  • Pandas知识点-索引和切片操作

    索引和切片操作是最基本最常用的数据处理操作,Pandas中的索引和切片操作基于Python的语言特性,支持类似于numpy中的操作,也可以使用行标签、列标签以及行标签与列标签的组合来进行索引和切片操作...本文使用的数据来源于网易财经,具体下载方式可以参考:Pandas知识点-DataFrame数据结构介绍 前面介绍DataFrame和Series的文章中,代码是在Pycharm中编写的,本文和后面介绍Pandas...loc属性基于行索引名获取数据,用法为 data.loc['行索引'] ,如 data.loc['2021-02-19'] 可以获取2021年2月19日的交易数据。...使用DataFrame的index属性和columns属性可以得到行索引和列索引,在后面传入对应的数值就可以将数值索引转换成索引名。...如果需要同时转换多个索引名,可以在列表中添加,列表中的顺序可以不遵守index和columns的先后顺序,返回结果是一一对应的数值索引数组。 五、切片 ?

    2.3K20

    Python 全栈 191 问(附答案)

    找出字典前 n 个最大值对应的键 怎么一行代码合并两个字典? 怎么理解函数原型 max(iterable,*[, key, default]) ?...2020-02-22 11:19:19' 对应的时间格式串是 '%Y-%M-%d %H:%m:%S' ,正确吗? 列举 datetime 模块中的四个类?...使用 datetime 模块,打印出当前时间,显示格式:yyyy年-mm月-dd日 HH:mm:ss datetime.strptime('2020-02-22 15:12:33','%Y-%m-%d...求两个特征的相关系数 如何找出 NumPy 中的缺失值、以及缺失值的默认填充 Pandas 的 read_csv 30 个常用参数总结,从基本参数、通用解析参数、空值处理、时间处理、分块读入、格式和压缩等...方法总结 Pandas 的 melt 将宽 DataFrame 透视为长 DataFrame 例子 Pandas 的 pivot 和 pivot_table 透视使用案例 Pandas 的 crosstab

    4.2K20

    针对SAS用户:Python数据分析库pandas

    具体细节讨论见第11章— pandas Readers。 从读取UK_Accidents.csv文件开始。该文件包括从2015年1月1日到2015年12月31日中国香港的车辆事故数据。....下面显示了size、shape和ndim属性(分别对应于,单元格个数、行/列、维数)。 ? 读校验 读取一个文件后,常常想了解它的内容和结构。....PROC PRINT的输出在此处不显示。 下面的单元格显示的是范围按列的输出。列列表类似于PROC PRINT中的VAR。注意此语法的双方括号。这个例子展示了按列标签切片。按行切片也可以。...注意DataFrame的默认索引(从0增加到9)。这类似于SAS中的自动变量n。随后,我们使用DataFram中的其它列作为索引说明这。...在删除缺失行之前,计算在事故DataFrame中丢失的记录部分,创建于上面的df。 ? DataFrame中的24个记录将被删除。

    12.1K20

    利用 pandas 和 xarray 整理气象站点数据

    ,从外到内的坐标依次是:年、月、站点、日 ?...用Python处理这种文本列表就需要用上 pandas 库了, xarray 库就是基于 pandas 的,虽然天天在用 xarray ,但是这还是第一次正儿八经用 pandas 处理数据,就当做一次学习的过程啦...pandas 可用的时间坐标 将 DataFrame 进一步转换为 Dataset 并补充经纬度、站点名称信息 目标如图所示 ?...plt 定义处理过程中的函数: 处理时间坐标,利用 datetime 将整形的年、月、日转换为 pandas 的时间戳 def YMD_todatetime(ds): # 读取年月日数据,转换为.../Station/' # 文件路径,自定义 year = list(range(2012, 2014)) # 提取年份 usecols = ['区站号', '年', '月', '日', '平均本站气压

    10.2K41

    数据导入与预处理-第6章-02数据变换

    本文介绍的Pandas中关于数据变换的基本操作包括轴向旋转(6.2.2小节)、分组与聚合(6.2.3小节)、哑变量处理(6.2.4小节)和面元划分(6.2.5小节)。...pivot_table透视的过程如下图: 假设某商店记录了5月和6月活动期间不同品牌手机的促销价格,保存到以日期、商品名称、价格为列标题的表格中,若对该表格的商品名称列进行轴向旋转操作,即将商品名称一列的唯一值变换成列索引...'荣耀9X','小米6x','OPPO A1'], '出售日期': ['5月25日', '5月25日','5月25日',...'6月18日','6月18日', '6月18日'], '价格(元)': [999, 1399, 1399, 800, 1200, 1250]}) df_obj...: # 根据列表对df_obj进行分组,列表中相同元素对应的行会归为一组 groupby_obj = df_obj.groupby(by=['A', 'A', 'B', 'B', 'A', 'B'])

    19.3K20

    利用 pandas 和 xarray 整理气象站点数据

    ,比如下图这种格式,从外到内的坐标依次是:年、月、站点、日 这种格式与CSV格式还有点不同,CSV格式是字段间用相同的符号隔开,而图中的文件可能是用 Fortran 写的,每个字段的长度固定为30个字符...用Python处理这种文本列表就需要用上 pandas 库了, xarray 库就是基于 pandas 的,虽然天天在用 xarray ,但是这还是第一次正儿八经用 pandas 处理数据,就当做一次学习的过程啦...文件读取与预处理 导入所需的库 import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as...plt 定义处理过程中的函数: 处理时间坐标,利用 datetime 将整形的年、月、日转换为 pandas 的时间戳 def YMD_todatetime(ds): # 读取年月日数据,转换为.../Station/' # 文件路径,自定义 year = list(range(2012, 2014)) # 提取年份 usecols = ['区站号', '年', '月', '日', '平均本站气压

    5.4K13

    Pandas中的数据转换

    中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...提取第一个匹配的子串 extract 方法接受一个正则表达式并至少包含一个捕获组,指定参数 expand=True 可以保证每次都返回 DataFrame。...) endswith() 相当于每个元素的str.endswith(pat) findall() 计算每个字符串的所有模式/正则表达式的列表 match() 在每个元素上调用re.match,返回匹配的组作为列表...,性别×,生于×年×月×日” (b)将(a)中的人员生日信息部分修改为用中文表示(如一九七四年十月二十三日),其余返回格式不变。...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。

    13510

    Pandas

    多级索引建立与单个索引相似,只需将每一级各个值对应的索引名称传给 index 参数即可,每一级的索引单独组成一个列表,传入 index 的参数应为列表的嵌套。...常用属性 在多数涉及时间相关的数据处理,统计分析的过程中,需要提取时间中的年份,月份等数据。使用对应的 Timestamp 类属性就能够实现这一目的。...使用 Timedelta 类,配合常规的时间相关类能够轻松实现时间的算术运算。目前 Timedelta 函数中时间周期中没有年和月。所有周期名称,对应单位及其说明如下表所示。...{'姓名': '布洛妮娅·扎伊切克', '生日': '8月18日', '外号': '板鸭'} , {'姓名': '德丽莎·阿波卡利斯', '生日': '3月28日', '...series 也可以是数组列表 其它参数与 pandas.pivot_table()方法类似。

    9.2K30

    Pandas入门

    标题中的英文首字母大写比较规范,但在python实际使用中均为小写。 2018年8月2日笔记 建议读者安装anaconda,这个集成开发环境自带了很多包。...作者推荐到2018年8月2日仍为最新版本的anaconda下载链接: https://pan.baidu.com/s/1pbzVbr1ZJ-iQqJzy1wKs0A 密码: g6ex 下面代码的开发环境为...]中的值必须是索引的真实值; 用iloc进行索引时,中括号[ ]中的值必须是整数,与列表list索引取值类似,例如obj.iloc[2]就是取第3行的值。...其实, Dataframe中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...image.png 4.4 DataFrame选出多行 选出第2、 3行,即选出索引为1、2的行,代码如下: 注意,df.iloc 不是方法,是类似于列表list的可迭代对象,所以后面必须接中括号[

    2.2K50

    Python数据分析实战基础 | 初识Pandas

    它提供了两种类型的数据结构,分别是DataFrame和Series,我们可以简单粗暴的把DataFrame理解为Excel里面的一张表,而Series就是表中的某一列,后面学习和用到的所有Pandas骚操作...别忘了,第一步一定是先导入我们的库——import pandas as pd 构造DataFrame最常用的方式是字典+列表,语句很简单,先是字典外括,然后依次打出每一列标题及其对应的列值(此处一定要用列表...左边是jupyter notebook中dataframe的样子,如果对应到excel中,他就是右边表格的样子,通过改变columns,index和values的值来控制数据。...1、查看数据,掐头看尾 很多时候我们想要对数据内容做一个总览,用df.head()函数直接可以查看默认的前5行,与之对应,df.tail()就可以查看数据尾部的5行数据,这两个参数内可以传入一个数值来控制查看的行数...以案例数据为例,我们这些渠道数据,是在2019年8月2日提取的,后面可能涉及到其他日期的渠道数据,所以需要加一列时间予以区分,在EXCEL中常用的时间格式是'2019-8-3'或者'2019/8/3',

    1.8K30

    Python数据分析实战基础 | 初识Pandas

    它提供了两种类型的数据结构,分别是DataFrame和Series,我们可以简单粗暴的把DataFrame理解为Excel里面的一张表,而Series就是表中的某一列,后面学习和用到的所有Pandas骚操作...别忘了,第一步一定是先导入我们的库——import pandas as pd 构造DataFrame最常用的方式是字典+列表,语句很简单,先是字典外括,然后依次打出每一列标题及其对应的列值(此处一定要用列表...左边是jupyter notebook中dataframe的样子,如果对应到excel中,他就是右边表格的样子,通过改变columns,index和values的值来控制数据。...1、查看数据,掐头看尾 很多时候我们想要对数据内容做一个总览,用df.head()函数直接可以查看默认的前5行,与之对应,df.tail()就可以查看数据尾部的5行数据,这两个参数内可以传入一个数值来控制查看的行数...以案例数据为例,我们这些渠道数据,是在2019年8月2日提取的,后面可能涉及到其他日期的渠道数据,所以需要加一列时间予以区分,在EXCEL中常用的时间格式是'2019-8-3'或者'2019/8/3',

    2K12

    用 Pandas 做 ETL,不要太快

    本文对电影数据做 ETL 为例,分享一下 Pandas 的高效使用。完整的代码请在公众号「Python七号」回复「etl」获取。 1、提取数据 这里从电影数据 API 请求数据。...JSON 数据,这里使用 from_dict() 从记录中创建 Pandas 的 DataFrame 对象: df = pd.DataFrame.from_dict(response_list) 如果在...2、转换 我们并不需要提取数据的所有这些列,所以接下来选择我们需要使用的列。...的列名称列表,以便从主数据帧中选择所需的列。...,使用了 explode、crosstab 函数来扩展多个列,其效果就是如果电影属于某个类型,该行的值就为 1,结果就是这样: 关于日期时间,我们希望将日期扩展为年、月、日、周,像这样: 那么以下代码就是干这个的

    3.3K10

    Python数据分析实战基础 | 初识Pandas

    它提供了两种类型的数据结构,分别是DataFrame和Series,我们可以简单粗暴的把DataFrame理解为Excel里面的一张表,而Series就是表中的某一列,后面学习和用到的所有Pandas骚操作...别忘了,第一步一定是先导入我们的库——import pandas as pd 构造DataFrame最常用的方式是字典+列表,语句很简单,先是字典外括,然后依次打出每一列标题及其对应的列值(此处一定要用列表...左边是jupyter notebook中dataframe的样子,如果对应到excel中,他就是右边表格的样子,通过改变columns,index和values的值来控制数据。...1、查看数据,掐头看尾 很多时候我们想要对数据内容做一个总览,用df.head()函数直接可以查看默认的前5行,与之对应,df.tail()就可以查看数据尾部的5行数据,这两个参数内可以传入一个数值来控制查看的行数...以案例数据为例,我们这些渠道数据,是在2019年8月2日提取的,后面可能涉及到其他日期的渠道数据,所以需要加一列时间予以区分,在EXCEL中常用的时间格式是'2019-8-3'或者'2019/8/3',

    1.4K40

    地理空间数据的时间序列分析

    案例研究:日本北海道的日降雨模式 数据来源 在这个案例研究中,我使用了日本北海道2020年1月1日至12月31日期间的降雨空间分布数据,涵盖了一年的366天。...较亮的像素具有较高的降雨值。在下一节中,我将提取这些值并将它们转换为pandas数据框。 从光栅文件中提取数据 现在进入关键步骤——提取每个366个光栅图像的像素值。...这个过程很简单:我们将循环遍历每个图像,读取像素值并将它们存储在一个列表中。 我们将另外在另一个列表中跟踪日期信息。我们从哪里获取日期信息?...因此,我们刚刚创建了两个列表,一个存储文件名中的日期,另一个存储降雨数据。...转换为时间序列数据框 在pandas中,将列表转换为数据框格式是一项简单的任务: # convert lists to a dataframe df = pd.DataFrame(zip(date, rainfall_mm

    24710
    领券