首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从pandas中的其他数据框中获取当天的最后价格

在pandas中,可以使用merge()函数从其他数据框中获取当天的最后价格。merge()函数可以将两个数据框按照指定的列进行合并,从而获取需要的数据。

具体步骤如下:

  1. 导入pandas库:import pandas as pd
  2. 创建一个数据框df1,包含需要获取最后价格的列,例如日期(date)和价格(price)。
  3. 创建另一个数据框df2,包含其他需要合并的数据。
  4. 使用merge()函数将df1和df2按照日期列进行合并,并指定合并方式为内连接(inner join):merged_df = pd.merge(df1, df2, on='date', how='inner')
  5. 从合并后的数据框merged_df中筛选出当天的最后价格,可以使用groupby()和max()函数:last_price = merged_df.groupby('date')['price'].max()

这样,通过以上步骤,你可以从pandas中的其他数据框中获取当天的最后价格。

请注意,以上只是一个示例,具体的实现方式可能会根据数据的结构和需求有所不同。同时,腾讯云并没有与pandas直接相关的产品,因此无法提供相关产品和产品介绍链接地址。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

从损坏的手机中获取数据

有时候,犯罪分子会故意损坏手机来破坏数据。比如粉碎、射击手机或是直接扔进水里,但取证专家仍然可以找到手机里的证据。 如何获取损坏了的手机中的数据呢? ?...他们选择以人们通常的习惯添加数据,比如拍照、发送消息、使用Facebook、LinkedIn和其他社交媒体应用程序。...要知道,在过去,专家们通常是将芯片轻轻地从板上拔下来并将它们放入芯片读取器中来实现数据获取的,但是金属引脚很细。一旦损坏它们,则获取数据就会变得非常困难甚至失败。 ?...图2:数字取证专家通常可以使用JTAG方法从损坏的手机中提取数据 数据提取 几年前,专家发现,与其将芯片直接从电路板上拉下来,不如像从导线上剥去绝缘层一样,将它们放在车床上,磨掉板的另一面,直到引脚暴露出来...比较结果表明,JTAG和Chip-off均提取了数据而没有对其进行更改,但是某些软件工具比其他工具更擅长理解数据,尤其是那些来自社交媒体应用程序中的数据。

10.2K10
  • Python pandas获取网页中的表数据(网页抓取)

    标签:Python与Excel,pandas 现如今,人们随时随地都可以连接到互联网上,互联网可能是最大的公共数据库,学习如何从互联网上获取数据至关重要。...因此,有必要了解如何使用Python和pandas库从web页面获取表数据。此外,如果你已经在使用Excel PowerQuery,这相当于“从Web获取数据”功能,但这里的功能更强大100倍。...这里只介绍HTML表格的原因是,大多数时候,当我们试图从网站获取数据时,它都是表格格式。pandas是从网站获取表格格式数据的完美工具!...因此,使用pandas从网站获取数据的唯一要求是数据必须存储在表中,或者用HTML术语来讲,存储在…标记中。...对于那些没有存储在表中的数据,我们需要其他方法来抓取网站。 网络抓取示例 我们前面的示例大多是带有几个数据点的小表,让我们使用稍微大一点的更多数据来处理。

    8.1K30

    Pandas中的数据分类

    公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型的使用 subjects = ["语文...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \

    8.6K20

    Pandas中的数据转换

    中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...我们再来试试其他一些方法。例如,统计每个字符串的长度。 user_info.city.str.len() 替换和分割 使用 .srt 属性也支持替换与分割操作。...方法 描述 cat() 连接字符串 split() 在分隔符上分割字符串 rsplit() 从字符串末尾开始分隔字符串 get() 索引到每个元素(检索第i个元素) join() 使用分隔符在系列的每个元素中加入字符串...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat

    13510

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...(30).reshape((6,5)), columns=['A','B','C','D','E']) # 写入本地 data.to_excel("D:\\实验数据...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    10K21

    VC如何获取对话框中控件的坐标

    VC如何获取对话框中控件的坐标 GetWindowRect是取得窗口在屏幕坐标系下的RECT坐标(包括客户区和非客户区),这样可以得到窗口的大小和相对屏幕左上角(0,0)的位置。...GetClientRect取得窗口客户区(不包括非客户区)在客户区坐标系下的RECT坐标,可以得到窗口的大小,而不能得到相对屏幕的位置,它的top和left都为0,right和botton是宽和高,因为这个矩阵是在客户区坐标系下...(相对于窗口客户区的左上角)的。  ...ClientToScreen把客户区坐标系下的RECT坐标转换为屏幕坐标系下的RECT坐标. ScreenToClient把屏幕坐标系下的RECT坐标转换为客户区坐标系下的RECT坐标.     ...引自:http://blog.chinaunix.net/u/25372/showart_304363.html 所以要获得一个控件再对话框中的坐标的实现代码是: CRect lpRec; GetDlgItem

    2.5K90

    用过Excel,就会获取pandas数据框架中的值、行和列

    标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。

    19.2K60

    MYSQL中获取得最后一条记录的语句

    并用它作为其他表的外键,形成“主从表结构”,这是数据库设计中 常见的用法。...但是在具体生成id的时候,我们的操作顺序一般是:先在主表中插入记录,然后获得自动生成的id,以它为基础插入从表的记录。这里面有个困 难,就是插入主表记录后,如何获得它对应的id。...乍一看,它和select max(id)很象,但实际上它是线程安全的。也就是说它是具体于数据库连接的。...下面通过实验说明:   1、在连接1中向A表插入一条记录,A表包含一个auto_increment类型的字段。   2、在连接2中向A表再插入一条记录。   ...3、结果:在连接1中执行select LAST_INSERT_ID()得到的结果和连接2中执行select LAST_INSERT_ID()的结果是不同的;而在两个连接中执行select max(id)

    4K30

    pandas中的series数据类型

    import pandas as pd import numpy as np import names ''' 写在前面的话: 1、series与array类型的不同之处为series有索引,...而另一个没有;series中的数据必须是一维的,而array类型不一定 2、可以把series看成一个定长的有序字典,可以通过shape,index,values等得到series的属性 '''...''' (1)通过index取值,可以通过下标获取,也可以通过指定索引获取,如s6,s7 (2)通过.loc[](显示索引)获取,这种方式只能获取显示出来的索引,无法通过下标获取,如s7(推荐) (3...两者的数据类型不一样,None的类型为,而NaN的类型为; (2)可以使用pd.isnull(),pd.notnull(),或自带...''' # print(s12.isnull()) ''' 烽 False 火 False 雷 True 电 True dtype: bool ''' # 取出series中不为空的值

    1.2K20

    从Bitmap中获取YUV数据的两种方式

    从Bitmap中我们能获取到的是RGB颜色分量,当需要获取YUV数据的时候,则需要先提取R,G,B分量的值,然后将RGB转化为YUV(根据具体的YUV的排列格式做相应的Y,U,V分量的排列) 所以这篇文章的真正题目叫...“从Bitmap中获取RGB数据的两种方式” ?...,下面我们以从Bitmap中获取NV21数据为例进行说明 从Bitmap中获取RGB数据,Android SDK提供了两种方式供我们使用 第一种是getPixels接口: public void getPixels...接口从Bitmap中获取NV21数据的完整代码 public static byte[] fetchNV21(@NonNull Bitmap bitmap) { ByteBuffer...= 5760007, w * h = 1440000 从Bitmap中拿到RGB数据,再转化为YUV数据后,根据Y,U,V分量排列的不同可以任意组合为自己所需要的YUV格式~

    4.7K20

    SpringBoot获取配置中的数据

    SpringBoot获取配置中的数据 简介:本文通过案例讲解SpringBoot如何yaml,yml,properties中的数据。 方法 1.@Value 2. Environment 3....// 这种方式是 自动化配对所以需要yml中的数据与Person类中的一致 public class Person { private String name; private int...现在要进行 m 个操作,操作共有两种: M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作; Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中...接下来 m 行,每行包含一个操作指令,指令为 M a b 或 Q a b 中的一种。...数据范围 1≤n,m≤105 输入样例: 4 5 M 1 2 M 3 4 Q 1 2 Q 1 3 Q 3 4 输出样例: Yes No Yes 提交代码 #include<iostream

    9110

    pandas中的数据处理利器-groupby

    在数据分析中,常常有这样的场景,需要对不同类别的数据,分别进行处理,然后再将处理之后的内容合并,作为结果输出。对于这样的场景,就需要借助灵活的groupby功能来处理。...上述例子在python中的实现过程如下 >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'x':['a','a...,通过groupby方法,首选根据x标签的内容分为a,b,c3组,然后对每组求均值,最后将结果进行合并。...汇总数据 transform方法返回一个和输入的原始数据相同尺寸的数据框,常用于在原始数据框的基础上增加新的一列分组统计数据,用法如下 >>> df = pd.DataFrame({'x':['a','...中的groupby功能非常的灵活强大,可以极大提高数据处理的效率。

    3.6K10
    领券