要在不使用Python语言中的NetworkX函数的情况下编写计算图的距离矩阵的函数distance_matrix
,我们需要手动实现图的表示和最短路径算法。以下是一个示例代码,展示了如何使用Dijkstra算法来计算图的距离矩阵。
以下是一个使用Dijkstra算法计算图的距离矩阵的Python函数:
import heapq
def dijkstra(graph, start):
queue = []
heapq.heappush(queue, (0, start))
distances = {node: float('inf') for node in graph}
distances[start] = 0
while queue:
current_distance, current_node = heapq.heappop(queue)
if current_distance > distances[current_node]:
continue
for neighbor, weight in graph[current_node].items():
distance = current_distance + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(queue, (distance, neighbor))
return distances
def distance_matrix(graph):
nodes = list(graph.keys())
matrix = [[0] * len(nodes) for _ in range(len(nodes))]
for i, node in enumerate(nodes):
distances = dijkstra(graph, node)
for j, other_node in enumerate(nodes):
matrix[i][j] = distances[other_node]
return matrix
# 示例图
graph = {
'A': {'B': 1, 'C': 4},
'B': {'A': 1, 'C': 2, 'D': 5},
'C': {'A': 4, 'B': 2, 'D': 1},
'D': {'B': 5, 'C': 1}
}
# 计算距离矩阵
print(distance_matrix(graph))
通过这种方式,你可以在不依赖NetworkX库的情况下计算图的距离矩阵,并且可以根据具体需求进行调整和优化。
领取专属 10元无门槛券
手把手带您无忧上云