首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何将.pb文件转换为.h5。(Tensorflow模型到keras)

将.pb文件转换为.h5(Tensorflow模型到Keras)可以通过以下步骤完成:

  1. 确保已经安装了Tensorflow和Keras的适当版本。
  2. 导入Tensorflow和Keras的相关库:
  3. 导入Tensorflow和Keras的相关库:
  4. 加载.pb文件并将其转换为Keras模型:
  5. 加载.pb文件并将其转换为Keras模型:
  6. 将Tensorflow的图定义(GraphDef)转换为Keras模型的权重文件:
  7. 将Tensorflow的图定义(GraphDef)转换为Keras模型的权重文件:
  8. 这将保存转换后的模型为.h5文件。

请注意,上述代码中的'path/to/your/model.pb'应该替换为实际的.pb文件路径,'input_node_name'应替换为Tensorflow模型中输入节点的名称。

推荐的腾讯云相关产品:腾讯云AI Lab(https://cloud.tencent.com/product/ailab)提供了各类人工智能技术的开放平台,可用于模型转换等相关任务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

OpenVINO部署加速Keras训练生成的模型

要把Keras框架训练生成的h5模型部署到OpenVINO上,有两条技术路线: 选择一: 把预训练权重文件h5转换pb文件,然后再转为OpenVINO可以解析的IR文件 选择二: 把预训练权重文件h5转为...从Keras到ONNX 先说一下我的版本信息 - Tensorflow2.2.0 - Keras2.4.3 - OpenVINO2021.02 - Python3.6.5 - CUDA10.1 ?...怎么从Keras的h5权重文件到ONNX格式文件,我还是很白痴的存在,但是我相信ONNX格式生态已经是很完善了,支持各种转ONNX格式,所以我搜索一波发现,github上有个很好用的工具Keras2ONNX...然后我从github上找了个Keras全卷积语义分割网络的源码库,下载了预训练模型,通过下面的几行代码完成了从h5权重模型文件到ONNX格式文件的转换 # Load model and weights...这里唯一需要注意的是,Keras转换为ONNX格式模型的输入数据格式是NHWC而不是OpenVINO预训练库中模型的常见的输入格式NCHW。运行结果如下 ?

3.2K10
  • Keras模型转TensorFlow格式及使用

    Keras模型转TensorFlow 其实由于TensorFlow本身以及把Keras作为其高层简化API,且也是建议由浅入深地来研究应用,TensorFlow本身就对Keras的模型格式转化有支持,所以核心的代码很少...原理很简单:原理很简单,首先用 Keras 读取 .h5 模型文件,然后用 tensorflow 的 convert_variables_to_constants 函数将所有变量转换成常量,最后再 write_graph...模型是一个包含了网络结构和权重的h5文件,那么使用下面的命令就可以了: python keras_to_tensorflow.py --input_model="path/to/keras/model.h5...此外作者还做了很多选项,比如如果你的keras模型文件分为网络结构和权重两个文件也可以支持,或者你想给转化后的网络节点编号,或者想在TensorFlow下继续训练等等,这份代码都是支持的,只是使用上需要输入不同的参数来设置...另外还告诉你冻结了多少个变量,以及你输出的模型路径,pb文件就是TensorFlow下的模型文件。

    1.2K20

    SavedModel格式TensorFlow模型转为frozen graph

    本文介绍基于Python的tensorflow库,将tensorflow与keras训练好的SavedModel格式神经网络模型转换为frozen graph格式,从而可以用OpenCV库在C++等其他语言中将其打开的方法...但是,由于训练模型时使用的是2.X版本的tensorflow库(且用的是keras的框架),所以训练模型后保存的是SavedModel格式的神经网络模型文件——就是包含3个.pb格式文件,以及assets...而在C++中读取神经网络模型,首先是可以借助tensorflow库的C++ API来实现,但是这种方法非常复杂——完整的TensorFlow C++ API部署起来非常困难——需要系统盘至少40 G到50...因此,如果希望基于OpenCV库读取tensorflow中SavedModel格式的模型,就需要首先将其转换为frozen graph格式;那么,本文就介绍一下这个操作的具体方法,并给出2种实现这一转换功能的...执行上述代码,在结果文件夹中,我们将看到1个.pb格式的神经网络模型结果文件,如下图所示。

    15710

    使用TensorFlow的经验分享

    模型部署: 作用:将保存的模型部署到服务器或本地以便提供使用。 三、搭建开发环境 目前我学习的是Anaconda+tensorflow。 1....学习搭建模型 1.模型的层的搭建学习:tensorflow.keras.layers库 2.设置优化器学习:tensorflow.keras.optimizers库 3.构建模型学习:tensorflow.keras.models...学习训练模型 1.了解fit函数的参数作用 2.设置回调函数学习:tensorflow.keras.callbacks库 3.模型损失率与准确率可视化 4....学习模型保存、加载、预测 1.保存h5模型、pb模型:学习model.save 2.加载h5模型、pb模型:学习model.load 3.使用模型进行预测:学习model. predict 六、学习模型部署...问题九:pb文件保存后加载问题 出现原因: 在模型训练结束后,我打算将h5文件转为pb文件,进行模型的部署,转换后我打算加载pb文件测试是否能使用。

    1.4K12

    【干货】使用TensorFlow官方Java API调用TensorFlow模型(附代码)

    【导读】随着TensorFlow的普及,越来越多的行业希望将Github中大量已有的TensorFlow代码和模型集成到自己的业务系统中,如何在常见的编程语言(Java、NodeJS等)中使用TensorFlow.../api_docs/java/reference/org/tensorflow/package-summary (推荐) 使用KerasServer托管TensorFlow/Keras代码及模型: https...由于KerasServer的服务端提供Python API, 因此可以直接将已有的TensorFlow/Keras Python代码和模型转换为KerasServer API,供Java/c/c++/C...在代码的最后,调用tf.graph_util.convert_variables_to_constants 将图进行转换,最后将图保存为模型文件(pb)。...TensorFlow的图(pb模型) ---- ---- 模型的执行与Python类似,依然是导入图,建立Session,指定输入(feed)和输出(fetch)。

    14.1K41

    基于Tensorflow2 Lite在Android手机上实现图像分类

    前言Tensorflow2之后,训练保存的模型也有所变化,基于Keras接口搭建的网络模型默认保存的模型是h5格式的,而之前的模型格式是pb。...Tensorflow2的h5格式的模型转换成tflite格式模型非常方便。...本教程就是介绍如何使用Tensorflow2的Keras接口训练分类模型并使用Tensorflow Lite部署到Android设备上。...Tensorflow2的keras搭建的一个MobileNetV2模型并训练自定义数据集,本教程主要是介绍如何在Android设备上使用Tensorflow Lite部署分类模型,所以关于训练模型只是简单介绍...通过上面得到的mobilenet_v2.h5模型,我们需要转换为tflite格式的模型,在Tensorflow2之后,这个转换就变动很简单了,通过下面的几行代码即可完成转换,最终我们会得到一个mobilenet_v2

    2.4K10

    基于Tensorflow2 Lite在Android手机上实现图像分类

    Lite在Android手机上实现图像分类 前言 Tensorflow2之后,训练保存的模型也有所变化,基于Keras接口搭建的网络模型默认保存的模型是h5格式的,而之前的模型格式是pb。...Tensorflow2的h5格式的模型转换成tflite格式模型非常方便。...本教程就是介绍如何使用Tensorflow2的Keras接口训练分类模型并使用Tensorflow Lite部署到Android设备上。...以下是使用Tensorflow2的keras搭建的一个MobileNetV2模型并训练自定义数据集,本教程主要是介绍如何在Android设备上使用Tensorflow Lite部署分类模型,所以关于训练模型只是简单介绍...通过上面得到的mobilenet_v2.h5模型,我们需要转换为tflite格式的模型,在Tensorflow2之后,这个转换就变动很简单了,通过下面的几行代码即可完成转换,最终我们会得到一个mobilenet_v2

    3.3K40

    TensorFlow小程序探索实践

    3、识别画布绘画 使用的是tensorflow 的 layerModel格式的模型 有H5版的手绘图片识别:https://medium.com/tensorflow/train-on-google-colab-and-run-on-the-browser-a-case-study...2)做大家送礼物的统一展示页面 3)可选项:可实现背景替换为摄像头数据,将实物置于摄像头背景之上,供用户导出图片,更具逼真性 三、实践训练转换模型 A、 通过colab在线训练模型 https://github.com...saveModel,即saved_model.pb 图片 双击即可下载,之后放到对应目录,用完全路径执行以下命令即可生成我们想要的graph_model模型 tensorflowjs_converter...2、转换模型 当需要在网页上检测时就需要把上面生成的.h5后缀的Keras模型转换格式为以下两种tensorflowjs支持的模型 LayersModel 和 GraphModels 的主要区别在于:.../tfjs-converter中的index.js内容复制到tfjs-core的index.js里面 然后把miniprogram/@tensorflow-models中的coco-ssd以及posenet

    2.1K80

    如何使用 TensorFlow mobile 将 PyTorch 和 Keras 模型部署到移动设备

    幸运的是,在移动应用方面,有很多工具开发成可以简化深度学习模型的部署和管理。在这篇文章中,我将阐释如何使用 TensorFlow mobile 将 PyTorch 和 Keras 部署到移动设备。...在转权值之前,我们需要在 PyTorch 和 Keras 中定义 Squeezenet 模型。 如下图所示,在这两种框架下定义 Squeezenet,然后将 PyTorch 权值转成 Keras。...("squeezenet.h5") 上面是已经转好权值的,你所需要做的是将 Keras 模型保存为 squeezenet.h5。...到这一步项目就创建完成了。 在你的移动 App 上执行推理 在用代码执行推理前,你需要将转化的模式 (squeezenet.pb) 添加到你的应用的资源文件夹里。...使用上述代码,你能轻松导出你训练的 PyTorch 和 Keras 模型到 TensorFlow。

    3.6K30

    如何使用TensorFlow mobile部署模型到移动设备

    幸运的是,在移动应用方面,有很多工具开发成可以简化深度学习模型的部署和管理。在这篇文章中,我将阐释如何使用 TensorFlow mobile 将 PyTorch 和 Keras 部署到移动设备。...在转权值之前,我们需要在 PyTorch 和 Keras 中定义 Squeezenet 模型。 如下图所示,在这两种框架下定义 Squeezenet,然后将 PyTorch 权值转成 Keras。...("squeezenet.h5") 上面是已经转好权值的,你所需要做的是将 Keras 模型保存为 squeezenet.h5。...到这一步项目就创建完成了。 在你的移动 App 上执行推理 在用代码执行推理前,你需要将转化的模式 (squeezenet.pb) 添加到你的应用的资源文件夹里。...使用上述代码,你能轻松导出你训练的 PyTorch 和 Keras 模型到 TensorFlow。

    1.1K50
    领券