首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

流批一体的技术优点

流批一体是指将实时流处理和批处理的技术相结合,以便更有效地处理大量数据。这种技术的优点包括:

  1. 更快的数据处理速度:流批一体技术可以实时处理数据,大大减少了数据处理的延迟,提高了数据处理速度。
  2. 更好的数据分析准确性:流批一体技术可以将实时数据和历史数据结合起来进行分析,从而提高数据分析的准确性。
  3. 更低的成本:流批一体技术可以减少数据存储和处理的成本,同时也可以提高数据处理的效率。
  4. 更好的数据应用场景:流批一体技术可以处理更多种类的数据应用场景,例如实时交通管理、智能制造、金融风控等。

推荐的腾讯云相关产品和产品介绍链接地址:

  1. 腾讯云实时流处理产品:https://cloud.tencent.com/product/tsf/stream
  2. 腾讯云批处理产品:https://cloud.tencent.com/product/batch
  3. 腾讯云数据处理产品:https://cloud.tencent.com/product/dts

这些产品都可以结合流批一体技术,以提高数据处理的效率和准确性。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

统一批处理流处理——Flink批流一体实现原理

实现批处理的技术许许多多,从各种关系型数据库的sql处理,到大数据领域的MapReduce,Hive,Spark等等。这些都是处理有限数据流的经典方式。...批处理是流处理的一种非常特殊的情况。在流处理中,我们为数据定义滑 动窗口或滚动窗口,并且在每次窗口滑动或滚动时生成结果。批处理则不同,我们定义一个全局窗口,所有的记录都属于同一个窗口。...这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以流批统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于批的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。

4.5K41

统一批处理流处理——Flink批流一体实现原理

实现批处理的技术许许多多,从各种关系型数据库的sql处理,到大数据领域的MapReduce,Hive,Spark等等。这些都是处理有限数据流的经典方式。...批处理是流处理的一种非常特殊的情况。在流处理中,我们为数据定义滑 动窗口或滚动窗口,并且在每次窗口滑动或滚动时生成结果。批处理则不同,我们定义一个全局窗口,所有的记录都属于同一个窗口。...这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以流批统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于批的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。

3.9K20
  • 构建技术中台——基于SQL的批流一体化ETL

    本文介绍了 SparkSQL 和 Flink 对于批流支持的特性以及批流一体化支持框架的难点。在介绍批流一体化实现的同时,重点分析了基于普元 SparkSQL-Flow 框架对批流支持的一种实现方式。...目录: 1.SparkSQL 和 Flink 对于批流支持的特性介绍 2.基于SparkSQL-Flow的批量分析框架 3.基于SparkStreaming SQL模式的流式处理支持 4.对于批流一体化...随着技术的发展,很多原来只有批处理的业务都有了实时的需求,流处理将会变得越来越重要,甚至成为一些数据分析的主要场景,如实时管控、预警相关。...四、对于批流一体化ETL的思考 Kettle ETL 工具 提到 ETL 不得不提 Kettle。批、流、数据源、多样性 大多数设计的ETL工具在他面前都相形见绌。...理想中的批流一体ETL 具有如 Kettle 般的算子表达能力,又具有完全的大数据处理能力。

    2.1K30

    前沿 | 流批一体的一些想法

    ❝每家数字化企业在目前遇到流批一体概念的时候,都会对这个概念抱有一些疑问,到底什么是流批一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。...❞ 前言 到底什么是流批一体? 批的来源?流的来源? 为什么要做流批一体? 从 数据开发的现状出发 探索理想中的流批一体能力支持 最终到数仓落地 go!!! ? ? ? ? ? ? ?...n 年前的引擎能力(hive 等) 对文件、批量数据处理支持很友好 数据多是小时、天级别延迟 结论:批是在批式存储、处理引擎能力支持的角度提出的 ? ?...站在用户的角度来看 对于相同的指标,有离线的、实时的,而且部分场景下口径不能统一! ? ? 博主理解的流批一体更多的是站在平台能力支持的角度上 所以这里重点说明引擎 + 工具链上的期望 ? ? ?...更多 Flink 实时大数据分析相关技术博文,视频。后台回复 “flink” 获取。 ?

    2K40

    流批一体在京东的探索与实践

    01 整体思考 提到流批一体,不得不提传统的大数据平台 —— Lambda 架构。...通过一套数据链路来同时满足流和批的数据处理需求是最理想的情况,即流批一体。此外我们认为流批一体还存在一些中间阶段,比如只实现计算的统一或者只实现存储的统一也是有重大意义的。...因此对于这类需求,只实现计算统一也是可行的。通过计算统一去降低用户的开发及维护成本,解决数据口径不一致的问题。 在流批一体技术落地的过程中,面临的挑战可以总结为以下 4 个方面: 首先是数据实时性。...而在流批一体模式下,开发模式变为了首先完成 SQL 的开发,其中包括逻辑的、物理的 DDL 的定义,以及它们之间的字段映射关系的指定,DML 的编写等,然后分别指定流批任务相关的配置,最后发布成流批两个任务...02 技术方案及优化 流批一体是以 FlinkSQL 为核心载体,所以我们对于 FlinkSQL 的底层能力也做了一些优化,主要分为维表优化、join 优化、window 优化和 Iceberg connector

    99941

    Flink流批一体 | 青训营笔记

    Flink如何做到流批一体 流批一体的理念 2020年,阿里巴巴实时计算团队提出“流批一体”的理念,期望依托Flink框架解决企业数据分析的3个核心问题,理念中包含三个着力点,分别是一套班子、一套系统、...一套班子:统一开发人员角色,现阶段企业数据分析有两个团队,一个团队负责实时开发,一个团队负责离线开发,在流批一体的理念中,期望促进两个团队的融合。...流批一体的理念即使用同一套 API、同一套开发范式来实现大数据的流计算和批计算,进而保证处理过程与结果的一致性。...何时需要流批一体 举例: 在抖音中,实时统计一个短视频的播放量、点赞数,也包括抖音直播间的实时观看人数等(流) 在抖音中,按天统计创造者的一些数据信息,比如昨天的播放量有多少、评论量多少、广告收入多少(...Apache Flink主要从以下模块来实流批一体化: 1.SQL层:支持bound和unbound数据集的处理; 2.DataStream API层统一,批和流都可以使用DataStream ApI来开发

    17510

    Flink 流批一体在 Shopee 的大规模实践

    平台在流批一体上的建设和演进 Tips:点击「阅读原文」免费领取 5000CU*小时 Flink 云资源 01 流批一体在 Shopee 的应用场景 首先,先来了解一下 Flink 在 Shopee...上面介绍的都是 Shopee 内部流批一体应用场景的一些例子,我们内部还有很多团队也正在尝试 Flink 的流批一体,未来会使用的更广泛。...这些优化都有效解决了生产过程中 Shopee 各个业务线遇的问题。 03 与离线生态的完全集成 在流批一体落地的过程中,用户最关心的就是技术架构的改动成本和潜在风险。...04 平台在流批一体上的建设和演进 最后我想介绍一下我们 Flink 平台在流批一体上的建设和演进。其实在上面介绍中,已经展示了不少平台的功能。...我们会加大 Flink 批任务的推广,探索更多流批一体的业务场景。同时跟社区一起,在合适的场景下,加速用户向 SQL 和流批一体的转型。

    76540

    OnZoom基于Apache Hudi的流批一体架构实践

    架构优化升级 基于以上问题,我们在进行大量技术调研选型及POC之后,我们主要做了如下2部分大的架构优化升级。...2.2 Apache Hudi 我们需要有一种能够兼容S3存储之后,既支持大量数据的批处理又支持增加数据的流处理的数据湖解决方案。...也提供了基于最新文件的Raw Parquet 读优化查询。从而实现流批一体架构而不是典型的Lambda架构。...hoodie.merge.allow.duplicate.on.inserts 其中:hoodie.combine.before.insert 决定是否对同一批次的数据按 recordKey...总结 我司基于Hudi实现流批一体数据湖架构上线生产环境已有半年多时间,在引入Hudi之后我们在以下各个方面都带来了一定收益: •成本: 引入Hudi数据湖方案之后,实现了S3数据增量查询和增量更新删除

    1.5K40

    Flink 1.11:更好用的流批一体 SQL 引擎

    通过 CBO 优化器、列式存储、和代码生成技术,Flink SQL 拥有非常高的查询效率。同时借助于 Flink runtime 良好的容错和扩展性,Flink SQL 可以轻松处理海量数据。...易用性的提升主要体现在以下几个方面: 更方便的追加或修改表定义 灵活的声明动态的查询参数 加强和统一了原有 TableEnv 上的 SQL 接口 简化了 connector 的属性定义 对 Hive 的...在 ETL 场景中,将多张表的数据合并到一张表,目标表的 schema 定义其实是上游表的合集,需要一种方便合并表定义的方式。...改为 true 只能使用 ALTER TABLE 这样的语句修改表的定义,从 1.11 开始,用户可以通过动态参数的形式灵活地设置表的属性参数,覆盖或者追加原表的 WITH (...)...,比如 schema 的易用性增强,Descriptor API 简化以及更丰富的流 DDL 将会是努力的方向,让我们拭目以待 ~

    1.6K11

    流批一体技术框架探索及在袋鼠云数栈中的实践

    ​ 一、关于流批一体数据仓库 流批一体是一种架构思想,这种思想说的是同一个业务,使用同一个sql逻辑,在既可以满足流处理计算同时也可以满足批处理任务的计算。...二、数栈在流批一体数仓上的演进 随着客户体量增大,客户需求逐步增加,面对PB级别的批数据和流数据的处理需求,数栈技术团队面临越来越多的挑战,在这个过程中逐步完善了数栈数仓架构体系。...为应对这种变化,数栈技术团队结合当时主流大数据处理技术,在原有的HIVE数仓上,增加了当时最先进的流批一体计算引擎Spark来加快离线计算性能。...三、数栈流批一体核心引擎FlinkX技术解读 FlinkX是一款基于Flink的流批统一的数据同步以及SQL计算工具。...FlinkX在数栈中实现流批一体流程图 3. 数栈流批一体在数仓上的实践 下面结合架构图场景讲述下数栈流批一体的做法。 ​

    5.6K60

    大数据架构如何做到流批一体?

    ; 简述大数据架构发展 Lambda 架构 Lambda 架构是目前影响最深刻的大数据处理架构,它的核心思想是将不可变的数据以追加的方式并行写到批和流处理系统内,随后将相同的计算逻辑分别在流和批系统中实现...,并且在查询阶段合并流和批的计算视图并展示给用户。...流批融合的 Lambda 架构 针对 Lambda 架构的问题3,计算逻辑需要分别在流批框架中实现和运行的问题,不少计算引擎已经开始往流批统一的方向去发展,例如 Spark 和 Flink,从而简化lambda...图4 Kafka + Flink + ElasticSearch的混合分析系统 Lambda plus:Tablestore + Blink 流批一体处理框架 Lambda plus 是基于 Tablestore...表格存储支持用户 tp 系统低延迟读写更新,同时也提供了索引功能 ad-hoc 查询分析,数据利用率高,容量型表格存储实例也可以保证数据存储成本可控; 计算上,Lambda plus 利用 Blink 流批一体计算引擎

    1.9K21

    【赵渝强老师】基于Flink的流批一体架构

    由于Flink集成了批计算和流计算,因此可以使用Flink构建流批一体的系统架构,主要包含数据集成的流批一体架构、数仓架构的流批一体架构和数据湖的流批一体。...基于Flink流批一体整个数据集成的架构将不同。...在Flink流批一体架构的基础上,Flink CDC也是流批混合的,它可以先读取数据库全量数据同步到数仓中,然后自动切换到增量模式。...视频讲解如下:二、数仓架构的流批一体架构 &emsp目前主流数仓架构都是一套典型的离线数仓和一套新的实时数仓,但这两套技术栈是分开的。...用流批一体架构来解决,以上难题将极大降低,其优点如下:首先,Flink 是一套开发规范,不存在两套开发成本。一个开发团队,一套技术栈,就可以做所有的离线和实时业务统计的问题。

    26310

    CSA1.4:支持SQL流批一体化

    长期以来,我们一直被告知批处理和流(有界和无界系统)是正交技术——一种参考架构,其中流媒体为数据湖提供养料,仅此而已。...其中批处理用于检查流的有效性(lambda),或者我们需要将所有内容都考虑为流(kappa)。 但在战壕中,作为数据从业者,我们想要更多。...从 CSA 1.4 开始,SSB 允许运行查询以连接和丰富来自有界和无界源的流。SSB 可以从 Kudu、Hive 和 JDBC 源加入以丰富流。随着时间的推移,我们将继续添加更多有界的源和接收器。...例如,执行丰富的点击流分析,或将传感器数据与历史测量值结合起来。SSB 中的新 DDL 接口提供了从CDP 堆栈中的任何位置定义流和批处理源并使用连续 SQL 连接它们的功能。...而不必解析流数据的流水。

    70710

    干货|流批一体Hudi近实时数仓实践

    数据湖可以汇集不同数据源(结构化、非结构化,离线批数据、实时流数据)和不同计算引擎(流计算引擎、批处理引擎,交互式分析引擎、机器学习引擎),是未来大数据的发展趋势,目前Hudi、Iceberg和DeltaLake...笔者基于对开源数据湖组件Hudi的研究和理解,思考在Iceberg、DeltaLake和Hudi等开源数据湖组件之上构建批流一体近实时数仓的可能性和思路。...03 批流一体 按照上述思路建设的近实时数仓同时还实现了批流一体:批量任务和流任务存储统一(通过Hudi/Iceberg/DeltaLake等湖组件存储在HDFS上)、计算统一(Flink/Spark作业...)、开发统一(Flink/Spark)、业务逻辑统一(同一套逻辑分为批和流)。...业务需求使用同一套加工逻辑开发代码,按照加工时效的粒度分为批和流两类加工,在统一的数据来源上在同一套计算环境分别进行批量和流式数据加工,四方面的统一保证批任务和流任务的数据结果一致性。

    6.1K20

    Dlink + FlinkSQL构建流批一体数据平台——部署篇

    摘要:本文介绍了某零售企业用户基于 Dlink + FlinkSQL 构建批流一体数据平台的实践,主要为部署的分享。...,最近调研了很多的开源项目,最终发现 Dlink 在建立批流一体的数据平台上更满足需求。...数据开发的便捷性对于数据平台来说非常重要,决定了项目的建设与运维成本,而 Dlink 提供了 FlinkSQL 与其他 SQL 的开发与调试能力,使数据开发工作达到Hue 的效果,自动提交及创建远程集群的能力降低了使用门槛...3.local 不熟悉的话慎用,并不要执行流任务。 三、集群中心 集群中心配置包括: 集群实例 集群配置其中集群实例适用场景为standalone和yarn session以及k8s session。...即添加 Flink 集群的 JobManager 的 RestApi 地址。

    6.3K10

    流批一体数据交换引擎 etl-engine

    流计算与批计算对比 数据时效性 流式计算实时、低延迟,流式计算适合以“t+0”的形式呈现业务数据; 批计算非实时、高延迟,批计算适合以“t+1”的形式呈现业务数据; 数据特征 流式计算数据一般是动态数据...,数据是随时产生的; 批计算数据一般是静态数据,数据事先已经存储在各种介质中。...批计算应用在离线计算场景,如:数据分析、离线报表等。 运行方式 流式计算的任务是阻塞式的,一直持续运行中。 批计算的任务是一次性完成即结束。...etl-engine 实现流式计算 etl-engine 支持通过自身提供的 ”kafka消费节点“进行消息消费,并在消费数据流(消息流)的同时调用自身提供的“融合查询API”,实现将多种数据源的维表数据读取到内存中...支持对多种类别数据库之间读取的数据进行融合查询。 支持消息流数据传输过程中动态产生的数据与多种类型数据库之间的流计算查询。 融合查询语法遵循ANSI SQL标准。

    747180

    Apache Pulsar:灵活的可扩展的批流一体的系统架构

    以及在批流一体的数据处理需求中,Pulsar的系统架构在性能,扩展性,可用性等方面相对其他传统架构的消息系统的无可比拟的优势。...此外,这种设计对容器是非常友好的,这使Pulsar成为流原生平台的理想选择。 Pulsar系统架构的优势也包括Pulsar的分片存储数据的方式。...不仅是消息系统而是流数据平台 我们上面讨论了Pulsar的分层架构如何为不同类型的工作负载提供高性能和可扩展性。但是Pulsar的分层架构带来的好处,远远不止这些。...以下是Pulsar能够胜任消息系统之外的一些方面。 存储无限大小的流 存储和计算分离的系统架构,让Pulsar可以被用作流数据平台。...Presto integration with Apache Pulsar Pulsar还可以与其他数据处理引擎进行类似集成,来作为批流一体的数据存储平台,例如Apache Spark或Apache Flink

    2.7K20

    触宝科技基于Apache Hudi的流批一体架构实践

    前言 当前公司的大数据实时链路如下图,数据源是MySQL数据库,然后通过Binlog Query的方式消费或者直接客户端采集到Kafka,最终通过基于Spark/Flink实现的批流一体计算引擎处理,最后输出到下游对应的存储...SQL语法大体上一致的批流一体架构,并且做了一些功能上的增强与优化。...•相比Flink纯内存的计算模型,在延迟不敏感的场景Spark更友好 这里举一个例子,比如批流一体引擎SS与Flink分别创建Kafka table并写入到ClickHouse,语法分别如下 Spark...的Format、与Spark/Hive语义基本一致的get_json_object以及json_tuple UDF,这些都是在批流一体引擎做的功能增强的一小部分。...新方案收益 通过链路架构升级,基于Flink/Spark + Hudi的新的流批一体架构带来了如下收益 •构建在Hudi上的批流统一架构纯SQL化极大的加速了用户的开发效率•Hudi在COW以及MOR不同场景的优化让用户有了更多的读取方式选择

    1.1K21
    领券