首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

LIS表示O(NlogN)或O(Nlog^2N)中的坐标值

LIS是最长递增子序列(Longest Increasing Subsequence)的缩写,它表示在一个序列中找到最长的递增子序列的长度。这个问题可以用动态规划的方法来解决,时间复杂度为O(NlogN)或O(Nlog^2N)。

动态规划解法中,我们可以使用一个辅助数组dp来记录以每个位置结尾的最长递增子序列的长度。初始化dp数组为1,表示每个元素自身构成一个递增子序列。然后,我们从第二个元素开始遍历原始序列,对于每个元素,我们再次遍历它之前的所有元素,如果存在比当前元素小的元素,且以该元素结尾的递增子序列长度加1大于当前元素的递增子序列长度,则更新dp数组中的值。最终,dp数组中的最大值即为最长递增子序列的长度。

LIS问题在很多领域都有应用,比如序列分析、数据压缩、图像处理等。在云计算领域中,LIS问题可以用于优化任务调度、资源分配等场景,以提高系统的性能和效率。

腾讯云提供了多个与LIS相关的产品和服务,其中包括:

  1. 云服务器(Elastic Compute Cloud,简称CVM):腾讯云提供的弹性计算服务,可根据实际需求快速创建、部署和管理云服务器,以满足不同规模和性能要求的应用场景。详情请参考:腾讯云云服务器
  2. 云数据库MySQL版(TencentDB for MySQL):腾讯云提供的高性能、可扩展的关系型数据库服务,支持自动备份、容灾、监控等功能,适用于各种规模的应用程序。详情请参考:腾讯云云数据库MySQL版
  3. 云原生容器服务(Tencent Kubernetes Engine,简称TKE):腾讯云提供的托管式Kubernetes容器服务,可帮助用户快速构建、部署和管理容器化应用,提供高可用、弹性伸缩、自动化运维等特性。详情请参考:腾讯云云原生容器服务

请注意,以上仅为示例,腾讯云还提供了更多与LIS相关的产品和服务,具体可根据实际需求进行选择和使用。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

数据结构与算法系列之时间复杂度

上一篇《数据结构和算法》中我介绍了数据结构的基本概念,也介绍了数据结构一般可以分为逻辑结构和物理结构。逻辑结构分为集合结构、线性结构、树形结构和图形结构。物理结构分为顺序存储结构和链式存储结构。并且也介绍了这些结构的特点。然后,又介绍了算法的概念和算法的5个基本特性,分别是输入、输出、有穷性、确定性和可行性。最后说阐述了一个好的算法需要遵守正确性、可读性、健壮性、时间效率高和存储量低。其实,实现效率和存储量就是时间复杂度和空间复杂度。本篇我们就围绕这两个"复杂度"展开说明。在真正的开发中,时间复杂度尤为重要,空间复杂度我们不做太多说明。

03

最长上升子序列 LIS算法实现[通俗易懂]

有两种算法复杂度为O(n*logn)和O(n^2)。在上述算法中,若使用朴素的顺序查找在D1..Dlen查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来算法相比没有任何进步。但是由于D的特点(2),在D中查找时,可以使用二分查找高效地完成,则整个算法时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D在算法结束后记录的并不是一个符合题意的最长上升子序列!算法还可以扩展到整个最长子序列系列问题。  有两种算法复杂度为O(n*logn)和O(n^2) O(n^2)算法分析如下   (a[1]…a[n] 存的都是输入的数)   1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列;   2、若从a[n-1]开始查找,则存在下面的两种可能性:   (1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n].   (2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。   3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的:   在a[t+1],a[t+2],…a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。   4、为算法上的需要,定义一个数组:   d:array [1..n,1..3] of integer;   d[t,1]表示a[t]   d[t,2]表示从i位置到达n的最长不下降子序列的长度   d[t,3]表示从i位置开始最长不下降子序列的下一个位置 最长不下降子序列的O(n*logn)算法   先回顾经典的O(n^2)的动态规划算法,设A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F[t] = 0(t = 1, 2, …, len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, …, t – 1, 且A[j] < A[t])。   现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足   (1)x < y < t (2)A[x] < A[y] < A[t] (3)F[x] = F[y]   此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?   很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] … A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。   再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。   注意到D[]的两个特点:   (1) D[k]的值是在整个计算过程中是单调不上升的。   (2) D[]的值是有序的,即D[1] < D[2] < D[3] < … < D[n]。   利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A[t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有D[j] < A[t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[t]。最后,len即为所要求的最长上升子序列的长度。   在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!   这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。

02
领券