首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas:如何在包含特殊分隔符的新列上提取列?

Pandas是一个基于Python的数据分析和数据处理库。它提供了丰富的数据结构和数据操作功能,可以方便地进行数据清洗、转换、分析和可视化等操作。

在Pandas中,可以使用str.split()方法来在包含特殊分隔符的新列上提取列。该方法可以将字符串按照指定的分隔符进行拆分,并返回一个包含拆分后元素的列表。

下面是一个示例代码,演示如何在包含特殊分隔符的新列上提取列:

代码语言:txt
复制
import pandas as pd

# 创建一个包含特殊分隔符的DataFrame
data = {'col1': ['A|B|C', 'D|E|F', 'G|H|I']}
df = pd.DataFrame(data)

# 使用str.split()方法提取列
df['new_col'] = df['col1'].str.split('|').str[0]

# 打印结果
print(df)

输出结果为:

代码语言:txt
复制
    col1 new_col
0  A|B|C       A
1  D|E|F       D
2  G|H|I       G

在上述示例中,我们首先创建了一个包含特殊分隔符的DataFrame。然后,使用str.split('|')方法将col1列按照竖线分隔符进行拆分,返回一个包含拆分后元素的列表。接着,使用.str[0]来提取拆分后列表的第一个元素,并将提取结果赋值给新的列new_col。最后,打印出DataFrame的内容,可以看到成功提取了列的第一个元素。

推荐的腾讯云相关产品:腾讯云服务器(CVM)和腾讯云数据库(TencentDB)。腾讯云服务器提供了弹性、安全、稳定的云服务器实例,可满足各种计算需求;腾讯云数据库提供了高性能、可扩展的数据库服务,支持多种数据库引擎,适用于各种应用场景。

腾讯云服务器产品介绍链接:https://cloud.tencent.com/product/cvm

腾讯云数据库产品介绍链接:https://cloud.tencent.com/product/tencentdb

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

盘点一个Pandas提取Excel包含特定关键词行(上篇)

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:大佬们,请教个小问题,我要查找某中具体值,譬如df[df['作者'] == 'abc'],但实际上这样子我找不到...ABC,因为对方实际是小写abc。...给了一个指导,如下所示: 全部转大写或者小写你就不用考虑了 只是不确定你实际代码场景。后来【论草莓如何成为冻干莓】给了一份代码,如下图所示: 顺利地解决了粉丝问题。...但是粉丝需求又发生了改变,下一篇文章我们一起来看看这个“善变”粉丝提问。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。

30010

盘点一个Pandas提取Excel包含特定关键词行(下篇)

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,上一篇中已经给出了代码,粉丝自己可能还没有领悟明白,一用就废,遇到了问题。...他代码照片如下图: 这个代码这么写,最后压根儿就没有得到他自己预期结果,遂来求助。这里又回归到了他自己最开始需求澄清!!!论需求表达清晰重要性!...二、实现过程 后来【莫生气】给了一份代码,如下图所示: 本以为顺利地解决了问题,但是粉丝又马上增改需求了,如下图所示: 真的,代码写,绝对没有他需求改快。得亏他没去做产品经理,不然危矣!...能给你做出来,先实现就不错了,再想着优化事呗。 后来【莫生气】给了一个正则表达式写法,总算是贴合了这个粉丝需求。 如果要结合pandas的话,可以写为下图代码: 至此,粉丝不再修改需求。...这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。 最后感谢粉丝【上海新年人】提出问题,感谢【鶏啊鶏。】

29810
  • 盘点一个Pandas提取Excel包含特定关键词行(中篇)

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,但是粉丝又改需求了,需求改来改去,就是没个定数。 这里他最新需求,如上图所示。...他意思在这里就是要上图中最下面这3个。 二、实现过程 后来【论草莓如何成为冻干莓】给了一份代码,如下图所示: 顺利地解决了粉丝问题。...可以看到,代码刚给出来,但是粉丝需求又发生了改变,不过不慌,这里又给出了对应代码,如下图所示: 一看就会,一用就废,粉丝自己刚上手,套用到自己数据里边,代码就失灵了。...下一篇文章,我们再来看这位粉丝遇到问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【鶏啊鶏。】、【论草莓如何成为冻干莓】给出思路,感谢【莫生气】等人参与学习交流。

    20510

    整理了10个经典Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas查询函数query。查询函数用于根据指定表达式提取记录,并返回一个DataFrame。表达式是用字符串形式表示条件或条件组合。...PANDASDATAFRAME(.loc和.iloc)属性用于根据行和标签和索引提取数据集子集。因此,它并不具备查询灵活性。...与数值类似可以在同一或不同列上使用多个条件,并且可以是数值和非数值列上条件组合。 除此以外, Pandasquery()方法还可以在查询表达式中使用数学计算。...我们还可以在一个或多个列上包含一些复杂计算。...= = 'Delivered'") output 查询表达式包含了日期时间和文本条件,它返回了符合查询表达式所有记录 替换 上面的查询中都会生成一个df。

    22620

    10个快速入门Query函数使用Pandas查询示例

    在开始之前,先快速回顾一下pandas -中查询函数query。查询函数用于根据指定表达式提取记录,并返回一个DataFrame。表达式是用字符串形式表示条件或条件组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和标签和索引提取数据集子集。因此,它并不具备查询灵活性。...与数值类似可以在同一或不同列上使用多个条件,并且可以是数值和非数值列上条件组合。 除此以外, Pandas Query()还可以在查询表达式中使用数学计算。...我们还可以在一个或多个列上包含一些复杂计算。...== 'Delivered'") 查询表达式包含了日期时间和文本条件,它返回了符合查询表达式所有记录 替换 上面的查询中都会生成一个df。

    4.4K20

    10快速入门Query函数使用Pandas查询示例

    在开始之前,先快速回顾一下pandas -中查询函数query。查询函数用于根据指定表达式提取记录,并返回一个DataFrame。表达式是用字符串形式表示条件或条件组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和标签和索引提取数据集子集。因此,它并不具备查询灵活性。...与数值类似可以在同一或不同列上使用多个条件,并且可以是数值和非数值列上条件组合。...我们还可以在一个或多个列上包含一些复杂计算。...== 'Delivered'") 查询表达式包含了日期时间和文本条件,它返回了符合查询表达式所有记录 替换 上面的查询中都会生成一个df。

    4.5K10

    单列文本拆分为多,Python可以自动化

    为了自动化这些手工操作,本文将展示如何在Python数据框架中将文本拆分为。...示例文件包含,一个人姓名和出生日期。 图2 我们任务如下: 1.把名字和姓氏分开 2.将出生日期拆分为年、月和日 让我们将数据加载到Python中。...图4 要在数据框架列上使用此切片方法,我们可以执行以下操作: 图5 字符串.split()方法 .split()方法允许根据给定分隔符将文本拆分为多个部分。...看一个例子: 图6 上面的示例使用逗号作为分隔符,将字符串拆分为两个单词。从技术上讲,我们可以使用字符作为分隔符。注意:返回结果是两个单词(字符串)列表。 那么,如何将其应用于数据框架?...让我们在“姓名”中尝试一下,以获得名字和姓氏。 图7 拆分是成功,但是当我们检查数据类型时,它似乎是一个pandas系列,每行是包含两个单词列表。

    7.1K10

    整理了10个经典Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas查询函数query。查询函数用于根据指定表达式提取记录,并返回一个DataFrame。表达式是用字符串形式表示条件或条件组合。...PANDASDATAFRAME(.loc和.iloc)属性用于根据行和标签和索引提取数据集子集。因此,它并不具备查询灵活性。...与数值类似可以在同一或不同列上使用多个条件,并且可以是数值和非数值列上条件组合。 除此以外, Pandasquery()方法还可以在查询表达式中使用数学计算。...我们还可以在一个或多个列上包含一些复杂计算。...= = 'Delivered'") output 查询表达式包含了日期时间和文本条件,它返回了符合查询表达式所有记录 替换 上面的查询中都会生成一个df。

    3.9K20

    Python与Excel协同应用初学者指南

    考虑使用Python标准PET-8格式,例如:下划线、破折号、驼峰式大小写,文本每一部分第一个字母大写,或者偏向使用短名字而不是长名字或句子。 尽量避免使用包含特殊字符名称,例如?...、$、%、^,等等,因为特殊字符不会告诉任何有关数据信息。 数据在某些中可能缺少值。确保使用NA或完整列平均值或中位数来填充它们。...pip install pandas在你环境中安装Pandas软件包,然后执行上面代码块中包含命令。 很简单,对吧?...这种从单元格中提取方法在本质上与通过索引位置从NumPy数组和Pandas数据框架中选择和提取值非常相似。...这将在提取单元格值方面提供很大灵活性,而无需太多硬编码。让我们打印出第2包含值。如果那些特定单元格是空,那么只是获取None。

    17.4K20

    Excel与pandas:使用applymap()创建复杂计算

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算,并讲解了一些简单示例。...通过将表达式赋值给一个(例如df['new column']=expression),可以在大多数情况下轻松创建计算。然而,有时我们需要创建相当复杂计算,这就是本文要讲解内容。...pandas applymap()方法 pandas提供了一种将自定义函数应用于或整个数据框架简单方法,就是.applymap()方法,这有点类似于map()函数作用。...注意下面的代码,我们只在包含平均值列上应用函数。因为我们知道第一包含字符串,如果我们尝试对字符串数据应用letter_grade()函数,可能会遇到错误。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多)。

    3.9K10

    Pandas 中三个对转换小操作

    前言 本文主要介绍三个对转换小操作: split 按分隔符分割成多个 astype 转换列为其它类型 将对应列上字符转换为大写或小写 创建 DataFrame 首先,导入 Pandas 模块...df_dev 索引; "dev_id" 为索引命名; inplcae = True 为原地操作,也就是说此次修改不会创建对象。...split 按分隔符分割成多个 现在我们想要将 name 划分成两个,其中一个列为 first_name,另外一个列为 last_name。...,全名为 Series.str.split,它可以根据给定分隔符对 Series 对象进行划分; " " 按照空格划分,我们可以传入字符串或者正则表达式,如果不指定则按照空格进行划分; n = 1 分割数量...df_dev['age'] = df_dev['age'].astype(str) df_dev['salary'] = df_dev['salary'].astype(float) df_dev 将对应列上字符转换为大写或小写

    1.2K20

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    我们使用表达式生成价格列表。代码所示,对于列表对象,你可以调用.index(...)方法查找某一元素首次出现位置。 5. 参考 查阅pandas文档中read_excel部分。...怎么做 从XML文件直接向一个pandas DataFrame对象读入数据需要些额外代码:这是由于XML文件有特殊结构,需要针对性地解析。接下来章节,我们会详细解释这些方法。...使用DataFrame对象.apply(...)方法遍历内部每一行。第一个参数指定了要应用到每行记录上方法。axis参数默认值为0。意味着指定方法会应用到DataFrame每一列上。...怎么做 pandas可以很方便地访问、提取、解析HTML文件。两行代码就能搞定。...拿到数据还有两点瑕疵:列名包含空白字符,数据包含分隔行。

    8.3K20

    Pandas必会方法汇总,建议收藏!

    举例:按索引提取单行数值 df_inner.loc[3] 四、DataFrame选取和重新组合数据方法 序号 方法 说明 1 df[val] 从DataFrame选取单列或一组;在特殊情况下比较便利...通过行和标签选取单一值 举例:使用iloc按位置区域提取数据 df_inner.iloc[:3,:2] #冒号前后数字不再是索引标签名称,而是数据所在位置,从0开始,前三行,前两。...'> 八、读写文本格式数据方法 序号 方法 说明 1 read_csv 从文件、URL、文件型对象中加载带分隔符数据。...默认分隔符为逗号 2 read_table 从文件、URL、文件型对象中加载带分隔符数据。...默认分隔符为制表符(t) 3 read_ fwf 读取定宽格式数据(也就是说,没有分隔符) 4 read_clipboard 读取剪贴板中数据,可以看做read_table剪贴板版。

    4.8K40

    Pandas必会方法汇总,数据分析必备!

    举例:按索引提取单行数值 df_inner.loc[3] 四、DataFrame选取和重新组合数据方法 序号 方法 说明 1 df[val] 从DataFrame选取单列或一组;在特殊情况下比较便利...9 reindex 通过标签选取行或 10 get_value 通过行和标签选取单一值 11 set_value 通过行和标签选取单一值 举例:使用iloc按位置区域提取数据 df_inner.iloc...'> 八、读写文本格式数据方法 序号 方法 说明 1 read_csv 从文件、URL、文件型对象中加载带分隔符数据。...默认分隔符为逗号 2 read_table 从文件、URL、文件型对象中加载带分隔符数据。...默认分隔符为制表符(t) 3 read_ fwf 读取定宽格式数据(也就是说,没有分隔符) 4 read_clipboard 读取剪贴板中数据,可以看做read_table剪贴板版。

    5.9K20

    pandas常用字符串处理方法看这一篇就够了

    ,就可以使用到str.replace()方法,其除了常规pat、flags、regex等参数外,还有特殊参数n用于设置每个元素字符串(默认为-1即不限制次数),参数repl用于设置填充内容,从开头开始总共替换几次...主要参数有pat、n,同上文类似的参数设定,另外还有特殊参数expand来设定对于是否以DataFrame中不同形式存储拆分结果,默认为False。...下面是一些简单例子: 2.3.4 利用findall()提取符合指定模式片段 利用findall(),可以按照指定字符片段/正则模式对字符型Series进行元素级提取,可用参数有pat、flags...(),下面是一些简单例子: 2.4 特殊型方法 除了上述介绍到字符串处理方法外,pandas中还有一些特殊方法,可以配合字符串解决更多处理需求,典型有: 2.4.1 利用get_dummies(...)方法生成哑变量 在涉及到机器学习特征工程过程中,我们可以使用到str.get_dummies()方法来对具有固定分隔符字符串进行哑变量生成,它只有一个参数sep,用于设置分隔符,暂时不支持正则模式

    1.2K10

    (数据科学学习手札131)pandas常用字符串处理方法总结

    ,就可以使用到str.replace()方法,其除了常规pat、flags、regex等参数外,还有特殊参数n用于设置每个元素字符串(默认为-1即不限制次数),参数repl用于设置填充内容,从开头开始总共替换几次...,主要参数有pat、n,同上文类似的参数设定,另外还有特殊参数expand来设定对于是否以DataFrame中不同形式存储拆分结果,默认为False。...下面是一些简单例子: 2.3.4 利用findall()提取符合指定模式片段   利用findall(),可以按照指定字符片段/正则模式对字符型Series进行元素级提取,可用参数有pat、flags...findall(),下面是一些简单例子: 2.4 特殊型方法   除了上述介绍到字符串处理方法外,pandas中还有一些特殊方法,可以配合字符串解决更多处理需求,典型有: 2.4.1 利用get_dummies...()方法生成哑变量   在涉及到机器学习特征工程过程中,我们可以使用到str.get_dummies()方法来对具有固定分隔符字符串进行哑变量生成,它只有一个参数sep,用于设置分隔符,暂时不支持正则模式

    1.3K30

    详解Pandas读取csv文件时2个有趣参数设置

    可以看到,这个csv文件主要有3标题分别为year、month和day,但特殊之处在于其分隔符不是常规comma,而是一个冒号。另外也显而易见是这三拼凑起来是一个正常年月日日期格式。...此时,当然可以简单通过传入正确分隔符作为sep参数来实现正确加载,但如果文件分隔符是未知呢?实际上,我们可以无需传入分隔符,而交由解析器自动解析。...; 传入嵌套列表,并尝试将每个子列表中所有拼接后解析为日期格式; 出啊字典,其中key为解析后列名,value为原文件中待解析索引列表,例如示例中{'foo': [1, 3]}即是用于将原文件中...1和3拼接解析,并重命名为foo 基于上述理解,完成前面的特殊csv文件中三拼接解析为日期需求就非常容易,即将0/1/2拼接解析就可以了。...不得不说,pandas提供这些函数参数可真够丰富了!

    2K20

    深入理解pandas读取excel,txt,csv文件等命令

    txt文件 读取txt文件需要确定txt文件是否符合基本格式,也就是是否存在\t,,,等特殊分隔符 一般txt文件长成这个样子 txt文件举例 下面的文件为空格间隔 1 2019-03-22 00...默认: 从文件、URL、文件对象中加载带有分隔符数据,默认分隔符是逗号。...=None names 指定列名,如果文件中不包含header行,应该显性表示header=None ,header可以是一个整数列表,0,1,3。...有的IDE中利用Pandasread_csv函数导入数据文件时,若文件路径或文件名包含中文,会报错。.../pandas-docs/stable/user_guide/io.html#files-with-fixed-width-columns 学习 read_msgpack 函数 pandas支持一种可序列化数据格式

    12.2K40

    独家 | Bamboolib:你所见过最有用Python库之一(附链接)

    我在这个博客中介绍了不同安装方法,展示了如何在安装Bamboolib之前创建一个环境。...使用不同数据类型和名称创建 如果您需要一个具有不同数据类型和名称,而不是更改数据类型和名称,该怎么办?只需单击数据类型,选择格式和名称,然后单击执行即可。...出于演示目的,我将游戏名称分割开来,这并没有什么意义,但你可以看到它是如何工作。 只需在Search转换框中键入split,选择要分割分隔符和你想要最大值。Boom!...提取datetime属性 如果您想从日期提取一个字符串,比如星期和月份,您知道代码吗,还是必须谷歌一下?有了BambooLib,这两种都不需要。...只需搜索extract datatime属性,选择日期,并选择要提取内容。 有多个选项供您选择。

    2.2K20
    领券