首页
学习
活动
专区
圈层
工具
发布
50 篇文章
1
2021年大数据Spark(一):框架概述
2
2021年大数据Spark(二):四大特点
3
2021年大数据Spark(三):框架模块初步了解
4
2021年大数据Spark(四):三种常见的运行模式
5
2021年大数据Spark(五):大环境搭建本地模式 Local
6
2021年大数据Spark(六):环境搭建集群模式 Standalone
7
2021年大数据Spark(七):应用架构基本了解
8
2021年大数据Spark(八):环境搭建集群模式 Standalone HA
9
2021年大数据Spark(九):Spark On Yarn两种模式总结
10
2021年大数据Spark(十):环境搭建集群模式 Spark on YARN
11
2021年大数据Spark(十一):应用开发基于IDEA集成环境
12
2021年大数据Spark(十二):Spark Core的RDD详解
13
2021年大数据Spark(十三):Spark Core的RDD创建
14
2021年大数据Spark(十四):Spark Core的RDD操作
15
2021年大数据Spark(十五):Spark Core的RDD常用算子
16
2021年大数据Spark(十六):Spark Core的RDD算子练习
17
2021年大数据Spark(十七):Spark Core的RDD持久化
18
2021年大数据Spark(十八):Spark Core的RDD Checkpoint
19
2021年大数据Spark(十九):Spark Core的​​​​​​​共享变量
20
2021年大数据Spark(二十):Spark Core外部数据源引入
21
2021年大数据Spark(二十一):Spark Core案例-SogouQ日志分析
22
2021年大数据Spark(二十二):内核原理
23
2021年大数据Spark(二十三):SparkSQL 概述
24
2021年大数据Spark(二十四):SparkSQL数据抽象
25
2021年大数据Spark(二十五):SparkSQL的RDD、DF、DS相关操作
26
2021年大数据Spark(二十六):SparkSQL数据处理分析
27
2021年大数据Spark(二十七):SparkSQL案例一花式查询和案例二WordCount
28
2021年大数据Spark(二十八):SparkSQL案例三电影评分数据分析
29
2021年大数据Spark(二十九):SparkSQL案例四开窗函数
30
2021年大数据Spark(三十):SparkSQL自定义UDF函数
31
2021年大数据Spark(三十一):Spark On Hive
32
2021年大数据Spark(三十二):SparkSQL的External DataSource
33
2021年大数据Spark(三十三):SparkSQL分布式SQL引擎
34
2021年大数据Spark(三十四):Spark Streaming概述
35
2021年大数据Spark(三十五):SparkStreaming数据抽象 DStream
36
2021年大数据Spark(三十六):SparkStreaming实战案例一 WordCount
37
2021年大数据Spark(三十七):SparkStreaming实战案例二 UpdateStateByKey
38
2021年大数据Spark(三十八):SparkStreaming实战案例三 状态恢复 扩展
39
2021年大数据Spark(三十九):SparkStreaming实战案例四 窗口函数
40
2021年大数据Spark(四十):SparkStreaming实战案例五 TopN-transform
41
2021年大数据Spark(四十一):SparkStreaming实战案例六 自定义输出 foreachRDD
42
2021年大数据Spark(四十二):SparkStreaming的Kafka快速回顾与整合说明
43
2021年大数据Spark(四十三):SparkStreaming整合Kafka 0.10 开发使用
44
2021年大数据Spark(四十四):Structured Streaming概述
45
2021年大数据Spark(四十五):Structured Streaming Sources 输入源
46
2021年大数据Spark(四十六):Structured Streaming Operations 操作
47
2021年大数据Spark(四十七):Structured Streaming Sink 输出
48
2021年大数据Spark(四十八):Structured Streaming 输出终端/位置
49
2021年大数据Spark(四十九):Structured Streaming 整合 Kafka
50
2021年大数据Spark(五十):Structured Streaming 案例一实时数据ETL架构

2021年大数据Spark(四):三种常见的运行模式

目录

Spark 运行模式

一、本地模式:Local Mode

二、集群模式:Cluster Mode

三、云服务:Kubernetes 模式


​​​​​​​

Spark 运行模式

   Spark 框架编写的应用程序可以运行在本地模式(Local Mode)、集群模式(Cluster Mode)和云服务(Cloud),方便开发测试和生产部署。

一、本地模式:Local Mode

将Spark 应用程序中任务Task运行在一个本地JVM Process进程中,通常开发测试使用。

​​​​​​​二、集群模式:Cluster Mode

将Spark应用程序运行在集群上,比如Hadoop YARN集群,Spark 自身集群Standalone及Apache Mesos集群,网址:http://spark.apache.org/docs/2.4.3/

  1. Spark Standalone集群模式(开发测试及生成环境使用):类似Hadoop YARN架构,典型的Mater/Slaves模式,使用Zookeeper搭建高可用,避免Master是有单点故障的。
  2. Hadoop YARN集群模式(生产环境使用):运行在 yarn 集群之上,由 yarn 负责资源管理,Spark 负责任务调度和计算,好处:计算资源按需伸缩,集群利用率高,共享底层存储,避免数据跨集群迁移。
  3.  Apache Mesos集群模式(国内使用较少):运行在 mesos 资源管理器框架之上,由 mesos 负责资源管理,Spark 负责任务调度和计算。

​​​​​​​三、云服务:Kubernetes 模式

中小公司未来会更多的使用云服务,Spark 2.3开始支持将Spark 开发应用运行到K8s上。

云平台都提供了 EMR产品(弹性MapReduce计算)

下一篇
举报
领券