首页
学习
活动
专区
圈层
工具
发布
50 篇文章
1
2021年大数据Spark(一):框架概述
2
2021年大数据Spark(二):四大特点
3
2021年大数据Spark(三):框架模块初步了解
4
2021年大数据Spark(四):三种常见的运行模式
5
2021年大数据Spark(五):大环境搭建本地模式 Local
6
2021年大数据Spark(六):环境搭建集群模式 Standalone
7
2021年大数据Spark(七):应用架构基本了解
8
2021年大数据Spark(八):环境搭建集群模式 Standalone HA
9
2021年大数据Spark(九):Spark On Yarn两种模式总结
10
2021年大数据Spark(十):环境搭建集群模式 Spark on YARN
11
2021年大数据Spark(十一):应用开发基于IDEA集成环境
12
2021年大数据Spark(十二):Spark Core的RDD详解
13
2021年大数据Spark(十三):Spark Core的RDD创建
14
2021年大数据Spark(十四):Spark Core的RDD操作
15
2021年大数据Spark(十五):Spark Core的RDD常用算子
16
2021年大数据Spark(十六):Spark Core的RDD算子练习
17
2021年大数据Spark(十七):Spark Core的RDD持久化
18
2021年大数据Spark(十八):Spark Core的RDD Checkpoint
19
2021年大数据Spark(十九):Spark Core的​​​​​​​共享变量
20
2021年大数据Spark(二十):Spark Core外部数据源引入
21
2021年大数据Spark(二十一):Spark Core案例-SogouQ日志分析
22
2021年大数据Spark(二十二):内核原理
23
2021年大数据Spark(二十三):SparkSQL 概述
24
2021年大数据Spark(二十四):SparkSQL数据抽象
25
2021年大数据Spark(二十五):SparkSQL的RDD、DF、DS相关操作
26
2021年大数据Spark(二十六):SparkSQL数据处理分析
27
2021年大数据Spark(二十七):SparkSQL案例一花式查询和案例二WordCount
28
2021年大数据Spark(二十八):SparkSQL案例三电影评分数据分析
29
2021年大数据Spark(二十九):SparkSQL案例四开窗函数
30
2021年大数据Spark(三十):SparkSQL自定义UDF函数
31
2021年大数据Spark(三十一):Spark On Hive
32
2021年大数据Spark(三十二):SparkSQL的External DataSource
33
2021年大数据Spark(三十三):SparkSQL分布式SQL引擎
34
2021年大数据Spark(三十四):Spark Streaming概述
35
2021年大数据Spark(三十五):SparkStreaming数据抽象 DStream
36
2021年大数据Spark(三十六):SparkStreaming实战案例一 WordCount
37
2021年大数据Spark(三十七):SparkStreaming实战案例二 UpdateStateByKey
38
2021年大数据Spark(三十八):SparkStreaming实战案例三 状态恢复 扩展
39
2021年大数据Spark(三十九):SparkStreaming实战案例四 窗口函数
40
2021年大数据Spark(四十):SparkStreaming实战案例五 TopN-transform
41
2021年大数据Spark(四十一):SparkStreaming实战案例六 自定义输出 foreachRDD
42
2021年大数据Spark(四十二):SparkStreaming的Kafka快速回顾与整合说明
43
2021年大数据Spark(四十三):SparkStreaming整合Kafka 0.10 开发使用
44
2021年大数据Spark(四十四):Structured Streaming概述
45
2021年大数据Spark(四十五):Structured Streaming Sources 输入源
46
2021年大数据Spark(四十六):Structured Streaming Operations 操作
47
2021年大数据Spark(四十七):Structured Streaming Sink 输出
48
2021年大数据Spark(四十八):Structured Streaming 输出终端/位置
49
2021年大数据Spark(四十九):Structured Streaming 整合 Kafka
50
2021年大数据Spark(五十):Structured Streaming 案例一实时数据ETL架构

2021年大数据Spark(二):四大特点

​​​​​​​

Spark 四大特点

Spark 使用Scala语言进行实现,它是一种面向对、函数式编程语言,能够像操作本地集合一样轻松的操作分布式数据集。Spark具有运行速度快、易用性好、通用性强和随处运行等特点。

速度快

由于Apache Spark支持内存计算,并且通过DAG(有向无环图)执行引擎支持无环数据流,所以官方宣称其在内存中的运算速度要比Hadoop的MapReduce快100倍,在硬盘中要快10倍。

   Spark处理数据与MapReduce处理数据相比,有如下两个不同点:

  1.  其一、Spark处理数据时,可以将中间处理结果数据存储到内存中;
  1.  其二、Spark Job调度以DAG方式,并且每个任务Task执行以线程(Thread)方式,并不是像MapReduce以进程(Process)方式执行。

2014 年的如此Benchmark测试中,Spark 秒杀Hadoop,在使用十分之一计算资源的情况下,相同数据的排序上,Spark 比Map Reduce快3倍

易于使用

Spark 的版本已经更新到 Spark 2.4.5(截止日期2020.05.01),支持了包括 Java、Scala、Python 、R和SQL语言在内的多种语言。

​​​​​​​通用性强

在 Spark 的基础上,Spark 还提供了包括Spark SQL、Spark Streaming、MLib 及GraphX在内的多个工具库,我们可以在一个应用中无缝地使用这些工具库。其中,Spark SQL 提供了结构化的数据处理方式,Spark Streaming 主要针对流式处理任务(也是本书的重点),MLlib提供了很多有用的机器学习算法库,GraphX提供图形和图形并行化计算。

​​​​​​​运行方式

Spark 支持多种运行方式,包括在 Hadoop 和 Mesos 上,也支持 Standalone的独立运行模式,同时也可以运行在云Kubernetes(Spark 2.3开始支持)上。

对于数据源而言,Spark 支持从HDFS、HBase、Cassandra 及 Kafka 等多种途径获取数据。

下一篇
举报
领券