首页
学习
活动
专区
圈层
工具
发布
50 篇文章
1
2021年大数据Spark(一):框架概述
2
2021年大数据Spark(二):四大特点
3
2021年大数据Spark(三):框架模块初步了解
4
2021年大数据Spark(四):三种常见的运行模式
5
2021年大数据Spark(五):大环境搭建本地模式 Local
6
2021年大数据Spark(六):环境搭建集群模式 Standalone
7
2021年大数据Spark(七):应用架构基本了解
8
2021年大数据Spark(八):环境搭建集群模式 Standalone HA
9
2021年大数据Spark(九):Spark On Yarn两种模式总结
10
2021年大数据Spark(十):环境搭建集群模式 Spark on YARN
11
2021年大数据Spark(十一):应用开发基于IDEA集成环境
12
2021年大数据Spark(十二):Spark Core的RDD详解
13
2021年大数据Spark(十三):Spark Core的RDD创建
14
2021年大数据Spark(十四):Spark Core的RDD操作
15
2021年大数据Spark(十五):Spark Core的RDD常用算子
16
2021年大数据Spark(十六):Spark Core的RDD算子练习
17
2021年大数据Spark(十七):Spark Core的RDD持久化
18
2021年大数据Spark(十八):Spark Core的RDD Checkpoint
19
2021年大数据Spark(十九):Spark Core的​​​​​​​共享变量
20
2021年大数据Spark(二十):Spark Core外部数据源引入
21
2021年大数据Spark(二十一):Spark Core案例-SogouQ日志分析
22
2021年大数据Spark(二十二):内核原理
23
2021年大数据Spark(二十三):SparkSQL 概述
24
2021年大数据Spark(二十四):SparkSQL数据抽象
25
2021年大数据Spark(二十五):SparkSQL的RDD、DF、DS相关操作
26
2021年大数据Spark(二十六):SparkSQL数据处理分析
27
2021年大数据Spark(二十七):SparkSQL案例一花式查询和案例二WordCount
28
2021年大数据Spark(二十八):SparkSQL案例三电影评分数据分析
29
2021年大数据Spark(二十九):SparkSQL案例四开窗函数
30
2021年大数据Spark(三十):SparkSQL自定义UDF函数
31
2021年大数据Spark(三十一):Spark On Hive
32
2021年大数据Spark(三十二):SparkSQL的External DataSource
33
2021年大数据Spark(三十三):SparkSQL分布式SQL引擎
34
2021年大数据Spark(三十四):Spark Streaming概述
35
2021年大数据Spark(三十五):SparkStreaming数据抽象 DStream
36
2021年大数据Spark(三十六):SparkStreaming实战案例一 WordCount
37
2021年大数据Spark(三十七):SparkStreaming实战案例二 UpdateStateByKey
38
2021年大数据Spark(三十八):SparkStreaming实战案例三 状态恢复 扩展
39
2021年大数据Spark(三十九):SparkStreaming实战案例四 窗口函数
40
2021年大数据Spark(四十):SparkStreaming实战案例五 TopN-transform
41
2021年大数据Spark(四十一):SparkStreaming实战案例六 自定义输出 foreachRDD
42
2021年大数据Spark(四十二):SparkStreaming的Kafka快速回顾与整合说明
43
2021年大数据Spark(四十三):SparkStreaming整合Kafka 0.10 开发使用
44
2021年大数据Spark(四十四):Structured Streaming概述
45
2021年大数据Spark(四十五):Structured Streaming Sources 输入源
46
2021年大数据Spark(四十六):Structured Streaming Operations 操作
47
2021年大数据Spark(四十七):Structured Streaming Sink 输出
48
2021年大数据Spark(四十八):Structured Streaming 输出终端/位置
49
2021年大数据Spark(四十九):Structured Streaming 整合 Kafka
50
2021年大数据Spark(五十):Structured Streaming 案例一实时数据ETL架构

2021年大数据Spark(三十五):SparkStreaming数据抽象 DStream


SparkStreaming数据抽象-DStream

DStream 是什么

Spark Streaming的核心是DStream,DStream类似于RDD,它实质上一系列的RDD的集合,DStream可以按照秒、分等时间间隔将数据流进行批量的划分

如下图所示:将流式数据按照【X seconds】划分很多批次Batch,每个Batch数据封装到RDD中进行处理分析,最后每批次数据进行输出。

对于目前版本的Spark Streaming而言,其最小的Batch Size的选取在0.5~5秒钟之间,所以Spark Streaming能够满足流式准实时计算场景,对实时性要求非常高的如高频实时交易场景则不太适合。

DStream代表了一种连续的数据流,要么从某种数据源提取数据,要么从其他数据流映射转换而来。DStream内部是由一系列连续的RDD组成的,每个RDD都包含了特定时间间隔内的一批数据,

DStream是不间断的 连续的数据对象(内容是无边界的)

如下图所示:

DStream本质上是一个:一系列时间上连续的RDD(Seq[RDD]),DStream = Seq[RDD]

DStream = Seq[RDD]

 DStream相当于一个序列(集合),里面存储的数据类型为RDD(Streaming按照时间间隔划分流式数据)

对DStream的数据进行操作也是按照RDD为单位进行的 。

  通过WEB UI界面可知,对DStream调用函数操作,底层就是对RDD进行操作,发现很多时候DStream中函数与RDD中函数一样的。

DStream中每批次数据RDD在处理时,各个RDD之间存在依赖关系,DStream直接也有依赖关系,RDD具有容错性,那么DStream也具有容错性。

上图相关说明:

 1)、每一个椭圆形表示一个RDD

 2)、椭圆形中的每个圆形代表一个RDD中的一个Partition分区

 3)、每一列的多个RDD表示一个DStream(图中有三列所以有三个DStream)

 4)、每一行最后一个RDD则表示每一个Batch Size所产生的中间结果RDD

Spark Streaming将流式计算分解成多个Spark Job,对于每一时间段数据的处理都会经过Spark DAG图分解以及Spark的任务集的调度过程。

​​​​​​​DStream Operations

 DStream#Output Operations:将DStream中每批次RDD处理结果resultRDD输出

DStream类似RDD,里面包含很多函数,进行数据处理和输出操作,主要分为两大类:

​​​​​​​Transformation

大多数和RDD中的类似,有一些特殊的针对特定类型应用使用的函数,比如updateStateByKey状态函数、window窗口函数等,后续具体结合案例讲解。

http://spark.apache.org/docs/2.4.5/streaming-programming-guide.html#transformations-on-dstreams

Transformation

Meaning

map(func)

对DStream中的各个元素进行func函数操作,然后返回一个新的DStream

flatMap(func)

与map方法类似,只不过各个输入项可以被输出为零个或多个输出项

filter(func)

过滤出所有函数func返回值为true的DStream元素并返回一个新的DStream

union(otherStream)

将源DStream和输入参数为otherDStream的元素合并,并返回一个新的DStream.

reduceByKey(func, [numTasks])

利用func函数对源DStream中的key进行聚合操作,然后返回新的(K,V)对构成的DStream

join(otherStream, [numTasks])

输入为(K,V)、(K,W)类型的DStream,返回一个新的(K,(V,W)类型的DStream

transform(func)

通过RDD-to-RDD函数作用于DStream中的各个RDD,可以是任意的操作,从而返回一个新的RDD

​​​​​​​Output函数

http://spark.apache.org/docs/2.4.5/streaming-programming-guide.html#output-operations-on-dstreams

Output Operation

Meaning

print()

打印到控制台

saveAsTextFiles(prefix, [suffix])

保存流的内容为文本文件,文件名为"prefix-TIME_IN_MS[.suffix]".

saveAsObjectFiles(prefix,[suffix])

保存流的内容为SequenceFile,文件名为 "prefix-TIME_IN_MS[.suffix]".

saveAsHadoopFiles(prefix,[suffix])

保存流的内容为hadoop文件,文件名为"prefix-TIME_IN_MS[.suffix]".

foreachRDD(func)

对Dstream里面的每个RDD执行func

下一篇
举报
领券