首页
学习
活动
专区
圈层
工具
发布
50 篇文章
1
客快物流大数据项目(一):物流项目介绍和内容大纲
2
客快物流大数据项目(二):物流项目详细介绍
3
客快物流大数据项目(三):项目解决方案
4
客快物流大数据项目(四):大数据项目为什么使用Docker
5
客快物流大数据项目(五):Docker介绍
6
客快物流大数据项目(六):Docker与虚拟机的形象比喻及组件介绍
7
客快物流大数据项目(七):Docker总结
8
客快物流大数据项目(八):Docker的安装和启动
9
客快物流大数据项目(九):Docker常用命令
10
客快物流大数据项目(十):Docker容器命令
11
客快物流大数据项目(十一):Docker应用部署
12
客快物流大数据项目(十二):Docker的迁移与备份
13
客快物流大数据项目(十三):Docker镜像
14
客快物流大数据项目(十四):DockerFile介绍与构建过程解析
15
客快物流大数据项目(十五):DockeFile常用命令
16
客快物流大数据项目(十六):使用脚本创建镜像
17
客快物流大数据项目(十七):自定义镜像mycentos
18
客快物流大数据项目(十九):项目环境准备
19
客快物流大数据项目(二十):物流管理系统服务器的数据路径配置和软件下载存放位置
20
客快物流大数据项目(二十一):Docker环境初始化
21
客快物流大数据项目(二十二):Docker环境中安装软件
22
客快物流大数据项目(二十三):OGG介绍
23
客快物流大数据项目(二十四):OGG安装部署
24
客快物流大数据项目(二十五):初始化业务数据
25
客快物流大数据项目(二十六):客户关系管理服务器
26
客快物流大数据项目(二十七):Cloudera Manager简单介绍
27
客快物流大数据项目(二十八):大数据服务器环境准备
28
客快物流大数据项目(二十九):下载CDH的安装包
29
客快物流大数据项目(三十):软件下载后存放位置
30
客快物流大数据项目(三十一):常用工具安装
31
客快物流大数据项目(三十二):安装CDH-6.2.1和初始化CDH服务所需的MySQL库
32
客快物流大数据项目(三十三):安装Server和Agent
33
客快物流大数据项目(三十四):CDH开始安装
34
客快物流大数据项目(三十五):CDH使用注意
35
客快物流大数据项目(三十六):安装ElasticSearch-7.6.1
36
客快物流大数据项目(三十七):安装Kinaba-7.6.1
37
客快物流大数据项目(三十八):安装Azkaban-3.71.0
38
客快物流大数据项目(三十九):Hue安装
39
客快物流大数据项目(四十):ETL实现方案
40
客快物流大数据项目(四十一):Kudu入门介绍
41
客快物流大数据项目(四十二):Java代码操作Kudu
42
客快物流大数据项目(四十三):kudu的分区方式
43
客快物流大数据项目(四十四):Spark操作Kudu创建表
44
客快物流大数据项目(四十五):Spark操作Kudu DML操作
45
客快物流大数据项目(四十六):Spark操作Kudu dataFrame操作kudu
46
客快物流大数据项目(四十七):Spark操作Kudu Native RDD
47
客快物流大数据项目(四十八):Spark操作Kudu 修改表
48
客快物流大数据项目(四十九):开发环境初始化
49
客快物流大数据项目(五十):项目框架初始化
50
客快物流大数据项目(五十一):数据库表分析

客快物流大数据项目(四十):ETL实现方案

目录

ETL实现方案

一、ETL处理流程图

二、为什么使用Kudu作为存储介质

ETL实现方案

一、​​​​​​​ETL处理流程图

数据来源:

  • 来自于ogg同步到kafka的物流运输数据
  • 来自于canal同步到kafka的客户关系数据

二、为什么使用Kudu作为存储介质

  • 数据库数据上的快速分析

目前很多业务使用事务型数据库(MySQL、Oracle)做数据分析,把数据写入数据库,然后使用 SQL 进行有效信息提取,当数据规模很小的时候,这种方式确实是立竿见影的,但是当数据量级起来以后,会发现数据库吃不消了或者成本开销太大了,此时就需要把数据从事务型数据库里拷贝出来或者说剥离出来,装入一个分析型的数据库里。发现对于实时性和变更性的需求,目前只有 Kudu 一种组件能够满足需求,所以就产生了这样的一种场景:

MySQL 数据库增、删、改的数据通过 Binlog 实时的被同步到 Kudu 里,同时在 Impala(或者其他计算引擎如 Spark、Hive、Presto、MapReduce)上可以实时的看到。 这种场景也是目前业界使用最广泛的,认可度最高。

  • 用户行为日志的快速分析

对于用户行为日志的实时性敏感的业务,比如电商流量、AB 测试、优惠券的点击反馈、广告投放效果以及秒级导入秒级查询等需求,按 Kudu 出现以前的架构基本上都是这张图的模式:

不仅链路长而且实时性得不到有力保障,有些甚至是 T + 1 的,极大的削弱了业务的丰富度。 引入 Kudu 以后,大家看,数据的导入和查询都是在线实时的:

这种场景目前也是网易考拉和hub在使用的,其中hub甚至把 Kudu 当 HBase 来作点查使用。

下一篇
举报
领券