学习
实践
活动
专区
工具
TVP
写文章

我院廖备水教授为通讯作者的长文在人工智能顶级国际期刊AIJ发表

在人们的日常工作和生活中,逻辑推理无处不在。为了使得人工智能能够模拟人类的各种推理,需要建立各种形式推理系统

如果作为推理前提的信息是完全确定的、无冲突的,那么推理系统相对简单。然而,在大多数情况下,提供给推理系统的信息是不确定的、不一致的。这就要求推理系统能够处理异常和冲突。这个要求使得系统变得复杂和难以实现。在大数据背景下,如何简化形式推理系统,并使得推理过程可理解和可解释,是一个很值得研究的重大课题。

近年来,人们通过采用一种分层抽象的方式来建立推理系统,取得了重要进展。由于此类系统模拟人类的日常论辩,通常被称之为“计算论辩”(computational argumentation)。其基本特点是将推理分为局部和全局两个层面,前者处理局部推出关系,后者处理不同局部之间的冲突关系。这种分层和抽象化处理不仅简化了系统建模,同时也从根本上提高了系统的通用性、易理解性、可实现性和可解释性。

不过,分层抽象带来的问题是不同层面之间的衔接和配合问题。多年来,该问题一直是计算论辩研究领域的重点和难点。

最近,浙江大学“大数据+推理与决策创新团队”廖备水教授与国外合作伙伴在这个问题上取得重大突破。所建立的系统化的理论成果在人工智能领域顶级期刊《Artificial Intelligence》上发表。该理论的建立,对于推动计算论辩的研究及其在相关领域的应用有着重大的理论意义。

附论文出版信息:

Pietro Baroni, Massimiliano Giacomin, Beishui Liao*. A general semi-structured formalism for computational argumentation: Definition, properties, and examples of application. Artificial Intelligence257(2018)158-207.

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180312G0ZI8200?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

关注

腾讯云开发者公众号
10元无门槛代金券
洞察腾讯核心技术
剖析业界实践案例
腾讯云开发者公众号二维码

扫码关注腾讯云开发者

领取腾讯云代金券