OptumIQ最近的一项针对主要医疗机构进行的关于医疗人工智能的年度调查显示,未来5年每个组织的平均投资将达到3240万美元。
AI可以包含在现有的应用程序当中,也可以与工作流程中的应用程序进行集成。
在鲜为人知的以流程中心的方法中,人工智能可以被封装成工作流,而这些工作流将带我们进入下一个前沿领域。
包含AI的应用程序
人工智能是否能解决EMR的UI/UX问题,目前还没有定论--而以前被盲目承诺过的临床医生也可能不会急于相信人工智能能马上解决他们所有的电子病历问题。
在工作流中集成AI
威彻斯特中心健康网络(WMCHealth)的案例研究是将人工智能添加到现有工作流的一个很好的例子。
WMCHealth既使用了EHR的风险模型,也使用了来自Health Catalyst的第三方供应商的预测模型,来实现对出院患者进行优先级排序,以减少再入院的工作量。
他们将Health Catalyst的风险评分和EHR数据共同添加到一个仪表盘上,仪表盘上有出院清单,可以用来组织病例经理的工作,并帮助他们对需要参与的患者进行优先排序。
综合人工智能的新风险评分有助于识别更多的真实阳性病例(8%),并减少与EHR风险模型或LACE相比的误报率(30%)。
在医疗工作流程中应用人工智能的另一个例子是Beth Israel Deaconess医疗中心使用了Amazon SageMaker上的TensorFlow用以扫描术前文档包,以便识别同意书并将其插入到相应的电子医疗记录当中。
如果缺少同意书,该工具就会向EHR发送通知,并触发后续的工作流程操作。
AI封装的工作流
常见得BPM工具还很笨重,BPM项目也很昂贵。因此,BPM项目主要是在企业中实现的,并且通常是为了降低复杂后端流程的成本,例如订单的执行和供应链的管理。
从本质上讲,已编码的工作流是护理团队当前手工执行工作的数字版本。
它使得医疗组织能够监控医疗工作的流程,对不利条件做出快速反应,并不断改进流程,渥太华医院的BPM项目就说明了这一点。
通往未来的道路
尽管最近的低代码BPM工具通过与Salesforce.com、Dropbox、谷歌等应用程序的拖放集成,极大地简化了工作流编码,但这种便利性在医疗保健领域却受到了限制。
工作流的编码工作也导致产生了一系列新的“业务流程应用程序”,这些“业务流程应用程序”可以通过工作流上下文的表单(例如,病人出院)或某些语音助手与医护人员进行交互。
由于这些业务流程应用程序具有工作流程的感知能力,它们可以通过自动化工作流、任务和流程优化来简化工作人员与多个系统的交互,以及它们之间的交互。
例如,一个人工智能驱动的、可编码的工作流可以在护理团队、外部测试中心和患者之间实现协调工作的神奇效果,通过一个简单的命令“将患者转到Eastlake进行测试”,通过这样的护理过程,病人可以来到办公室,进行检查,并在合理的时间范围内对下一步进行规划。
更不用说在EHR中,你不需要点击就可以将数据输入到适当的屏幕中去。
三管齐下以获得竞争优势
虽然等待现有的应用程序添加人工智能并将AI应用程序或服务集成到工作流中,可以最大限度地减少对当前IT环境的干扰。
但它们也大大降低了人工智能改善我们的做事方式和为我们做事的能力。
人工智能投资的主要领域是自动化业务流程(行政操作或客户服务),占43%,而欺诈、浪费和滥用检测则占到36%。
此外,最受期待的前两项好处是提高效率和更准确的诊断。
总之,一个平衡的、三管齐下的战略将使医疗组织能够在必要时将项目中断的风险降到最低,而不会限制其对当前工作流或现有应用程序的创新能力。
在一个消费者的选择、利润率下降和对患者长期健康状况的风险假设带来持续压力的时代,用能力和实践来提升组织,使“人工智能能够封装工作流”,将是一个获得可持续竞争优势的重要机会。
来源:企业网
免责声明:本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按相应流程获取授权或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。
领取专属 10元无门槛券
私享最新 技术干货