Machine Learning基础入门

断断续续接触机器学习也差不多有1年多的时间了,论文看了一些,教程也看了一些,也动手写过一些东西,自认略微优点心得吧(大牛莫笑) 之前写的也很零散,所以这次就当做总结吧,也算是给自己的一个参考! 写的很浅显,主要追求通俗易懂,当然也是我的水平有限,目标就是做最好的入门资料[捂脸],有问题欢迎讨论!

声明:本专栏是在参考了网上众多资料和大牛的博客下整理收录的,如有侵权请联系作者删除,谢谢!

发展历史

这个已经有大牛写的很好了,参考这篇ML发展历史

ML的分类

按照是否存在监督,可划分成两类:

有监督的(supervised learning) 无监督的(unsupervisied learning)

按照学习方式的不同可以分为:

有监督的(除强化学习外) 无监督的 强化学习(reinforce learning)

按照具体的使用场景主要可以分为两类:

分类(classification) 回归(regression)

使用过程中我们都是按照具体的要求来进行,主要就是classificationregression,所以下面按照使用场景来说下

几个场景

基本上ML有如下几个场景:

  1. classification(example: SVM,KNN,CNN)
  2. regression(example: linear regression)
  3. clustering(example: k-means)
  4. dimensionality reduction(example: PCA)
  5. model selection(example: grid search,cross validation)
  6. preprocessing(example: standardization,variance scaling)

说到这,恐怕没有接触过ML的还是不知道我在说什么,下面就给大家先入为主的印象吧!

classification

大白话就是:给你一个目标预测此目标是属于哪一类的东西

实质就是预测x属于每一类的概率P(y|x),概率最大的y即为x的类别(label)

regression

通过不同的regression function来预测下个keyvalue是多少

比如说最简单的线性回归(linear regression):

clustering

主要的作用是:将某种规则下属于一类的物体归为一类,也就是聚类,典型的应用是k-means,比如下图:

dimensionality reduction

中文叫做降维,顾名思义就是用来降低数据的维度的,减少运算量. 在ML中往往由于输入数据维度过大,导致时间复杂度很高.但是输入数据往往是包含很多无用的信息的,一个想法就是:提取有用的信息,丢弃无用的或者贡献度较低的信息,来实现降维度的目的. 典型应用是主成分分析(principle component analysis),使用PCA可以把原本的维度大大降低,减小了运算成本

model selection

ML中经常遇到的就是有多个模型,如何选择模型,这需要一个科学的方法去得出数据(而不是人工的方式)来进行选择. 典型应用是交叉验证(cross validation),大致就是将数据集划分为不同的多个部分,使用其中的某些数据去训练模型,剩下的去验证这个模型的精度,可以进行比较科学的model selection.

preprocessing

往往我们直接拿到的原始数据是不能用在ML上的,在某些场景下可能需要进行预处理(preprocessing),比如:图像的去噪,数据的归一化等等. 这个需要视具体的任务和数据而定

先写到这,下篇继续

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据派THU

一文读懂ML中的解析解与数值解

本文将为你解释为什么没有一个机器学习专家能对上述问题给出直接答案。事实上,找到合适的数据、算法、参数是应用机器学习的难题,也是你唯一需要努力解决的部分。

1164
来自专栏数据派THU

用Python进行机器学习(附代码、学习资源)

本文从非线性数据进行建模,带你用简便并且稳健的方法来快速实现使用Python进行机器学习。

1596
来自专栏开心的学习之路

知识篇——聚类算法应用

时隔两月开始继续储备机器学习的知识,监督学习已经告一段落,非监督学习从聚类开始。 非监督学习与监督学习最大的区别在于目标变量事先不存在,也就是说 监督学习...

3085
来自专栏数据科学与人工智能

【数据科学】数据科学经验谈:这三点你在书里找不到

什么样的处理才算是正确的处理呢?为了目的不择手段?只要得到好的预测性能就万事大吉?事实确实如此,但是这么做的关键在于,你能确保未知数据也能有个不错的表现。就像我...

28410
来自专栏GAN&CV

全面解读Group Normbalization-(吴育昕-何凯明)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/d...

723
来自专栏瓜大三哥

视频压缩编码技术(H.264) 之帧内预测

在帧内预测模式中,预测块 P 是基于已编码重建块和当前块形成的。对亮度像素而言,P 块用于4×4 子块或者16×16 宏块的相关操作。4×4 亮度子块有9 种可...

802
来自专栏磐创AI技术团队的专栏

一个完整的机器学习项目在Python中的演练(二)

1607
来自专栏机器之心

ECCV 2018 | 旷视科技提出新型轻量架构ShuffleNet V2:从理论复杂度到实用设计准则

作者:Ningning Ma、Xiangyu Zhang、Hai-Tao Zhen、Jian Sun

842
来自专栏大数据挖掘DT机器学习

数据挖掘工程师笔试及答案

2013百度校园招聘数据挖掘工程师 一、简答题(30分) 1、简述数据库操作的步骤(10分) 步骤:建立数据库连接、打开数据库连接、建立数据库命令、运行数据库命...

3968
来自专栏机器学习算法与Python学习

DNN在搜索场景中的应用

2694

扫码关注云+社区