DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试、正则化以及优化--Week2优化算法

1. Mini-batch梯度下降法

介绍

假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理:

如图所示,我们以1000为单位,将数据进行划分,令\(x^{\{1\}}=\{x^{(1)},x^{(2)}……x^{(5000)}\}\), 一般地用\(x^{\{t\}},y^{\{t\}}\)来表示划分后的mini-batch。

注意区分该系列教学视频的符号标记:

  • 小括号() 表示具体的某一个元素,指一个具体的值,例如\(x^{(i)}\)
  • 中括号[] 表示神经网络中的某一层,例如\(Z^{[l]}\)
  • 大括号{} 表示将数据细分后的一个集合,例如\(x^{\{1\}}=\{x^{(1)},x^{(2)}……x^{(5000)}\}\)

算法步骤

假设我们有5,000,000个数据,每1000作为一个集合,计入上面所提到的\(x^{\{1\}}=\{x^{(1)},x^{(2)}……x^{(5000)}\},……\)

  • 1)所以需要迭代运行5000次神经网络运算。
for i in range(5000):
  • 2)每一次迭代其实与之前笔记中所提到的计算过程一样,首先是前向传播,但是每次计算的数量是1000
  • 3)计算损失函数,如果有正则化,则记得加上正则项
  • 4)反向传播

注意,mini-batch相比于之前一次性计算所有数据不仅速度快,而且反向传播需要计算5000次,所以效果也更好。

2. 理解mini-batch梯度下降法

如上面所提到的,我们以1000位单位对数据进行划分,但是这只是为了更方便说明问题才这样划分的,那么我们在实际操作中应该如何划分呢?

首先考虑两个极端情况:

  • mini-batch size = m 此时即为Batch gradient descent,\((x^{\{t\}},y^{\{t\}})=(X,Y)\)
  • mini-batch size = 1 此时即为Stochastic gradient descent, \((x^{\{t\}},y^{\{t\}})=(x^{(i)},y^{(i)})\)

如图示,蓝色收敛曲线表示mini-batch size=m,比较耗时,但是最后能够收敛到最小值;而紫色收敛曲线表示mini-batch size=1,虽然速度可能较快,但是收敛曲线十分曲折,并且最终不会收敛到最小点,而是在其附近来回波动。

说了这么多,那么mini-batch size该如何选择呢?以下是选择的原则:

  • 如果数据量比较小(m<2000),可以使用batch gradient descent。一般来说mini-batch size取2的次方比较好,例如64,128,256,512等,因为这样与计算机内存设置相似,运算起来会更快一些。

3. 指数加权平均

为了理解后面会提到的各种优化算法,我们需要用到指数加权平均,在统计学中也叫做指数加权移动平均(Exponentially Weighted Moving Averages)

首先我们假设有一年的温度数据,如下图所示

我们现在需要计算出一个温度趋势曲线,计算方法如下:

\(V_0=0\)

\(V_1=β*V_0+(1-β)θ_1\)

\(……\)

\(V_t=β*V_{t-1}+(1-β)θ_t\)

上面的\(θ_t\)表示第t天的温度,β是可调节的参数,\(V_t\)表示\(\frac{1}{1-β}\)天的每日温度。

  • 当\(β=0.9\)时,表示平均了过去十天的温度,且温度趋势曲线如图中红线所示
  • 当\(β=0.98\)时,表示平均了过去50天的温度,温度趋势曲线如图中绿线所示。此时绿线相比较红线要平滑一些,是因为对过去温度的权重更大,所以当天天气温度的影响降低,在温度变化时,适应得更缓慢一些。
  • 当\(β=0.5\)时,温度趋势曲线如图中黄线所示

4. 理解指数加权平均

我们将上面的公式\(V_t=β*V_{t-1}+(1-β)θ_t\)展开可以得到 (假设β=0.9)

\[V_t=0.1θ_t+0.1*0.9θ_{t-1}+0.1*0.9^2θ_{t-2}+…\]

可以看到在计算第t天的加权温度时,也将之前的温度考虑进来,但是都有一个衰减因子β,并且随着天数的增加,衰减幅度也不断增加。(有点类似于卷积计算)

5. 指数加权平均的偏差修正

为什么需要修正呢?我们仔细分析一下就知道了

首先我们假设的是\(β=0.98, V_0=0\),然后由\(V_t=βV_{t-1}+(1-β)θ_t\)可知

\(V_1=0.98V_0+0.02θ_1=0.02θ_1\)

\(V_2=0.98V_1+0.02θ_2=0.0196θ_1+0.02θ_2\)

假设\(θ_1=40℃\),那么\(V_1=0.02*40=0.8℃\),这显然相差太大,同理对于后面的温度的计算也只会是变差越来越大。所以我们需要进行偏差修正,具体方法如下:

\[V_t=\frac{βV_{t-1}+(1-β)θ_t}{1-β^t}\]

注意!!!上面公式中的 \(V_{t-1}\)是未修正的值

为方便说明,令\(β=0.98,θ_1=40℃,θ_2=39℃\),则

当\(t=1,θ_1=40℃\)时,\(V_1=\frac{0.02*40}{1-0.98}=40\),哇哦~有没有很巧的感觉,再看 当\(t=2,θ_2=39℃\)时,\(V_2=\frac{0.98*V_{t-1}+0.02*θ_2}{1-0.98^2}=\frac{0.98*(0.02*θ_1)+0.02*39}{1-0.98^2}=39.49\)

所以,记住你如果直接用修正后的\(V_{t-1}\)值代入计算就大错特错了

6. 动量梯度下降法

首先介绍一下一般的梯度算法收敛情况是这样的

可以看到,在前进的道路上十分曲折,走了不少弯路,在纵向我们希望走得慢一点,横向则希望走得快一点,所以才有了动量梯度下降算法

Momentum算法的第t次迭代:

  • 计算出dw,db
  • 这个计算式子与上一届提到的指数加权平均有点类似,即 \(V_{dw}=βV_{dw}+(1-β)dw\) \(V_{db}=βV_{db}+(1-β)db\)
  • \(W=W-αV_{dw},b=b-αV_{db}\)

最终得到收敛的效果如下图的红色曲线所示。

该算法中涉及到的超参数有两个,分别是 \(α,β\),其中一般\(β=0.9\)是比较常取的值。

7. RMSprop

该算法全称叫Root Mean Square Prop(均方根传播)

这一节和上一节讲的都比较概括,不是很深入,所以就直接把算法记录下来吧。

在第t次迭代:

  • 计算该次mini-batch的dw,db
  • \(S_{dw}=βS_{dw}+(1-β)dw^2\) \(S_{db}=βS_{db}+(1-β)db^2\)
  • \(w:=w-α\frac{dw}{\sqrt{S_{dw}}}\) \(b:=b-α\frac{db}{\sqrt{S_{db}}}\)

收敛效果(原谅色)

8. Adam优化算法

Adam其实是MomentumRMSprop两个算法的结合,具体算法如下:

  • 初始化\(V_{dw}=0,V_{db}=0,S_{dw}=0,S_{dw}=0\)
  • 在第t次迭代
    • 计算出dw,db
    • \(V_{dw}=β_1V_{dw}+(1-β_1)dw\),\(V_{db}=β_1V_{db}+(1-β_1)db\) \(S_{dw}=β_2S_{dw}+(1-β_2)dw^2\),\(S_{db}=β_2S_{db}+(1-β_2)db^2\)
    • \(V_{dw}^{corrected}=\frac{V_{dw}}{1-β_1^t}\),\(V_{db}^{corrected}=\frac{V_{db}}{1-β_1^t}\) \(S_{dw}^{corrected}=\frac{S_{dw}}{1-β_2^t}\),\(S_{db}^{corrected}=\frac{S_{db}}{1-β_2^t}\)
    • \(W=W-α\frac{V_{dw}^{corrected}}{\sqrt{S_{dw}^{corrected}}+ε}\),\(b=b-α\frac{V_{db}^{corrected}}{\sqrt{S_{db}^{corrected}}+ε}\)

该算法中的超参数有\(α,β_1,β_2,ε\),一般来说\(β_1=0.9,β_2=0.999,ε=10^{-8}\)

9. 学习率衰减

之前算法中提到的学习率α都是一个常数,这样有可能会一个问题,就是刚开始收敛速度刚刚好,可是在后面收敛过程中学习率偏大,导致不能完全收敛,而是在最低点来回波动。所以为了解决这个问题,需要让学习率能够随着迭代次数的增加进行衰减,常见的计算公式有如下几种:

  • Learning rate decay

\[α=\frac{1}{1+decay_rate*epoch_num}α_0\]

decay_rate:衰减率 epoch_num: 迭代次数

举个栗子: 假设\(α_0\)初始化为0.2,decay_rate=1,则α的衰减过程如下:

Epoch

α

1

0.1

2

0.067

3

0.05

……

……

  • 其他衰减算法
    • 指数衰减:\(α=0.9^{epoch_num}α_0\)
    • \(α=\frac{K}{\sqrt{epoch_num}}α_0\)或\(α=\frac{k}{t}α_0\)(这个t表示mini-batch的第t组数据)
    • 离散衰减,每次迭代后变为上一次迭代的一半。

10. 局部最优问题

图左中有很多局部最优点。 图右用青色标记出来的点称为鞍点(saddle point),因为和马鞍相似,所以称为鞍点。

鞍点相比于局部最优点要更加棘手,因为从横向上看似乎是最低点,但是纵向上看却不是最低点,所以收敛过程有点缓慢,原因如下:

横向收敛只能沿着红线方向收敛,直到鞍点,而到了鞍点后才能往两边收敛,所以收敛的比较缓慢。

但是momentumAdam等算法因为能够加速学习,所以收敛速率更快,能够更快地收敛。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

机器学习实战之朴素贝叶斯

机器学习实战之朴素贝叶斯 1.1、简介 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。已知某条件概率,如何得到两个事件交换后...

1937
来自专栏人工智能LeadAI

Tensorflow新手通过PlayGround可视化初识神经网络

是不是觉得神经网络不够形象,概念不够清晰,如果你是新手,来玩玩PlayGround就知道,大神请绕道。 PlayGround是一个在线演示、实验的神经网络平台,...

5024
来自专栏大数据挖掘DT机器学习

基于贝叶斯算法的文本分类算法

1、基本定义: 分类是把一个事物分到某个类别中。一个事物具有很多属性,把它的众多属性看作一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个...

3144
来自专栏marsggbo

论文笔记系列-DARTS: Differentiable Architecture Search

我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型...

4683
来自专栏量子位

怎样构建深度学习模型?六步走,时刻小心过拟合 | 入门指南

1062
来自专栏AI科技评论

王宇龙:如何通过关键数据通路去理解网络行为?

AI科技评论按:神经网络长久以来的“黑盒”属性,导致人们一直无法理解网络的内部是如何运作的,针对这个困扰已久的问题,学界主要存在三种研究方向:数据归因模式、特征...

613
来自专栏杨熹的专栏

一个 tflearn 情感分析小例子

学习资料: https://www.youtube.com/watch?v=si8zZHkufRY&list=PL2-dafEMk2A7YdKv4XfKpfb...

4306
来自专栏CDA数据分析师

R语言的kmeans客户细分模型聚类

前言 kmeans是最简单的聚类算法之一,但是运用十分广泛。最近在工作中也经常遇到这个算法。kmeans一般在数据分析前期使用,选取适当的k,将数据分类后,然后...

3548
来自专栏李智的专栏

斯坦福CS231n - CNN for Visual Recognition(7)-lecture6梯度检查、参数更新

  梯度检查是非常重要的一个环节,就是将解析梯度和数值计算梯度进行比较。数值计算梯度时,使用中心化公式

1262
来自专栏小樱的经验随笔

神经网络算法

我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包...

3534

扫码关注云+社区

领取腾讯云代金券