每个人都应该知道的十个机器学习常识

当别人在高谈阔论机器学习时,你却插不上嘴,这是一种怎样的体验?不懂机器学习没有关系,但你一定要知道下面的十个机器学习基本常识。曾经在Endeca、谷歌和LinkedIn领导机器学习开发的Daniel Tunkelang为我们概括总结了这十个常识。

1. 机器学习就是从数据中挖掘洞见,而人工智能是炒作。

只要使用了正确的训练数据和算法,机器学习可以解决大部分问题。而所谓的人工智能,只不过是一种包装。只要有助于营销,你要把它叫作什么都可以。

2. 数据和算法是机器学习的核心,而数据更为重要。

虽然人们热衷于研究机器学习算法,但数据才是机器学习的关键要素。机器学习可以没有复杂完备的算法,但没有高质量的数据就不行。

3. 如果你没有大量数据,就不要使用太复杂的模型。

机器学习根据输入参数来探索模型空间,参数越多,越有可能出现过拟合,所以应该要尽量遵循简单模型的原则。

4. 机器学习的成果取决于数据的质量。

种瓜得瓜,种豆得豆。机器学习只能发现已经存在于数据中的模式。比如在解决分类问题时,就要求训练数据具有清晰的特征。

5. 只有当训练数据具有代表性时,机器学习才能奏效。

过去不能代表未来。要时刻警惕训练数据和生产数据之间出现倾斜,经常性地训练数据,避免数据模型过时。

6. 机器学习最困难的部分其实是数据转换。

机器学习的大肆炒作可能会给你造成一种印象,就是机器学习主要是如何选择和调整算法。但实际上,机器学习工作的大部分时间花在了数据清理和特征工程上,也就是将数据的原始特征转换成更具表示性的特征。

7. 深度学习是革命性的,但不是银弹。

深度学习对部分传统的特征工程进行了自动化,特别是在图像和视频处理领域。但深度学习不是银弹,我们无法在它擅长的领域之外应用它,况且,我们仍然要花很多精力进行数据清理和转换。

8. 机器学习系统也是高度脆弱的。

机器学习算法不会干掉人类,干掉人类的是人类自己。机器学习系统如果出现故障,通常都不是因为机器学习算法本身,而是人类在训练数据中引入了错误。要时刻警惕,软件工程中出现的错误在机器学习系统中同样会出现。

9. 机器学习可能在无意之中创造出可自我实现的预言。

今天通过机器学习做出的决策,将会影响未来收集到的训练数据。如果你在机器学习系统中嵌入了某种偏见,它会持续不断地生成新的训练数据,这些数据反过来增强了这种偏见,而有些偏见会毁掉人类的生活。所以,不要让机器学习系统有机会创造出可自我实现的预言。

10. 人工智能不会自我感知,也不会崛起到要干掉人类。

很多吃瓜群众从科幻电影中看到人工智能。但要注意,我们可以从科幻电影中获得灵感,但它们毕竟不是现实,我们真正要担心的是人类无意识地在机器学习系统中嵌入偏见。所以,我们根本不需要去担心什么“天网”或“超智能”。

本文来自企鹅号 - CoffeeTalk媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

机器学习中的数学,这是一份新鲜出炉的热门草稿

作者:Marc Peter Deisenroth、A Aldo Faisal、Cheng Soon Ong

1394
来自专栏数据的力量

深入浅出谈数据挖掘

1868
来自专栏AI科技评论

学界 | 心理学带来曙光,DeepMind要像理解人一样理解模型

AI 科技评论按:人类对各种深度学习模型最常见的不满之一就是难以解释、无法理解,即便可以查看训练好的网络的每个连接的权重,也说不清网络利用的数据模式是哪些,以及...

3528
来自专栏PPV课数据科学社区

【学习】深入浅出——谈数据挖掘

本文对数据挖掘概念的产生,数据挖掘与常规数据分析的主要区别,所能解决的几大类问题和所应用的领域都有着非常清晰的论述。作者在此篇文章中认为数据挖掘最重要的要素是分...

2834
来自专栏ATYUN订阅号

谷歌机器学习速成课程新增关于公平性训练模块

随着机器学习的继续采用,道德和公平是非常重要的考虑因素。虽然AI可以“比基于临时规则或人类判断的决策过程更具公平性和更具包容性”,但用于训练这些模型的数据可能存...

1186
来自专栏人工智能快报

Hinton取得新进展,以更少数据识别图像

谷歌人工智能先驱Geoffrey Hinton公布了AI技术进展,可提高电脑正确识别图像的速度和较少的数据依赖。 Google公司公布了关于其人工智能先驱Geo...

3206
来自专栏数据科学与人工智能

【机器学习】理解深度学习 vs 机器学习 vs 模式识别

本文我们来关注下三个非常相关的概念(深度学习、机器学习和模式识别),以及他们与2015年最热门的科技主题(机器人和人工智能)的联系。 ? 图1 人...

2118
来自专栏奇点大数据

统计、概率和数据挖掘

统计、概率、数据挖掘,这几个词经常伴随出现,尤其是统计和概率两个概念,几乎就像自然界的伴生矿一样分不了家,有很多出版社都出版过叫做《概率统计》的书籍。 我们这本...

2514
来自专栏CVer

381页机器学习数学基础PDF下载

【导读】近期,由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰写的《机器学习数学基础》“Mathemat...

2573
来自专栏专知

381页机器学习数学基础PDF下载

【导读】近期,由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰写的《机器学习数学基础》“Mathemat...

1.3K4

扫码关注云+社区

领取腾讯云代金券