【扫盲】如何区分人工智能,机器学习和深度学习

我们都熟悉“人工智能”这一概念。毕竟,这个词常常在热门电影中出现,如《终结者》、《黑客帝国》、《机械姬》。 但最近你也可能常常听到其他术语,如“机器学习”和“深度学习”,这些词有时与人工智能交替使用。

首先我将简单介绍一下人工智能( Artificial Intelligence ),机器学习( Machine Learning )和深度学习( Deep Learning )三者的区别。 然后,我将分析人工智能和物联网为何是不可分割的,技术的不断进步和融合逐渐为为人工智能和物联网爆炸奠定了基础。

三者的区别

人工智能( AI )

“人工智能”这一概念于 1956 年首次被计算机科学家 John McCarthy 提出。指的是在处理任务时具有人类智力特点的机器。包括具有组织和理解语言,识别物体和声音,以及学习和解决问题等能力。

我们可以把人工智能分广义和狭义两方面来理解。 广义上包括上述所有人类智力的特征。 狭义上的指在某些领域具有人工智能,且能在这些领域发挥到极致,但仅局限于此领域。 例如一个极为擅长识别图像的机器,但在其他方面表现欠佳,这就是狭义上的人工智能。

机器学习( ML )

机器学习是一种实现人工智能的方式。

在人工智能这一概念出现后不久, Arthur Samuel 在 1959 年提出“机器学习”这一概念即“(计算机)无需专门编程就能自主学习”。你可以在不使用机器学习的情况实现人工智能,但这意味着需要编写数百万行规则复杂的代码。

因此,和传统编程以明确的指令使计算机完成任务不同的是,机器学习通过“训练”使其学习如何完成任务。 “训练”包括向模型中载入大量数据,并且能够自动调整和改进算法。

举例来说机器学习已经被用于改进计算机视觉(机器通过图像或视频识别对象的能力)。人们收集数十万甚至数百万张图片,并一一标记。比如,人类可以标记当中有猫的图片,而不标记那些没有猫的。那么,算法尝试建立一个模型,就可以实现像人一样准确地标记包含猫的图片。一旦达到一定的精确度,我们就可以认为机器现在“学会”了识别猫的样子。

深度学习( DL )

深度学习是实现机器学习的途径之一。 其他途径包括策树,归纳逻辑程序设计,聚类,强化学习和贝叶斯网络等。

深度学习这一概念的灵感来自大脑的结构和功能,即众多神经元的相互连接。 人工神经网络( ANNs )即为模拟大脑生物结构的算法。

在 ANNs 中,存在具有独立处理层的“神经元”,且这些“神经元”与其他“神经元”相接。其中每个处理层具有特定的学习特征,如图像识别中的曲线/边缘。 正是这种分层赋予深度学习这一概念的名称,其中的深度是通过使用多个层而不是单个独立层实现的。

人工智能与物联网不可分割

人工智能与物联网之间的关系正如人类的大脑和身体。

我们的身体获取感官输入,如视觉,听觉和触觉。 我们的大脑进一步处理这些数据,使其具有意义。如把光转化为可识别的对象,把声音变成可以理解的语言。 然后大脑做出决定,发送信号给身体,发出指令运动,如捡起一个物体或说话。

构成物联网并相互连接的传感器都像我们的身体,它们提供了来自外界的原始数据。人工智能就像我们的大脑,处理这些数据并决定要执行的动作。这些传感器又再次像我们的身体一样,进行物理动作或与他人沟通。

释放彼此的潜力

人工智能和物联网由于彼此实现自身的价值和愿景。

机器学习和深度学习已促使人工智能在近年来实现了巨大的飞跃。如上所述,机器学习和深度学习需要大量的数据来工作,这些数据由数十亿在物联网中持续链接的传感器所收集。因此,物联网促进人工智能的发展。

同时,改进人工智能也将促进物联网发展,从而创造一个良性循环,这将大大促进两者的发展。这是由于人工智能使得物联网更实用的内因。

在工业方面,人工智能可以用于预测机器何时需要维护,或者何时需要分析制造进程,从而大幅度提高效率,节省成本。

在消费者方面,不是让人类去适应技术,而是让技术适应人类。摒弃繁琐的点击,输入和搜索,我们可以直接给机器下达指令,实现我们的需求。比如询问天气信息,或者营造更好地入睡环境如发出一系列指令(关闭恒温器,锁上门,关灯等)。

技术的进步与融合

计算机芯片的变小和制造技术的改进意味着带来成本更低,功能更强大的传感器。

迅速改进的电池技术意味着这些传感器可以不需要电源使用很久。

智能手机的出现带来的无线连接,意味着数据可以以更低的成本实现高容量的传送,同时使发送数据到云。

而云计算的出现为我们提供了几乎无限的存储空间和计算能力处理数据。

人工智能对我们的社会和未来带来的影响是不可预计的。可以肯定的是,随着人工智能和物联网的进步和持续发展,带来的影响必将是深远的。

ref:

https://iot-for-all.com/artificial-intelligence-machine-learning-and-deep-learning-169a4a136f62#.326vb9me4

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2017-03-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

【应用】机器学习商业应用入门及七个实例

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或...

3479
来自专栏PPV课数据科学社区

【学习】写给新人数据挖掘基础知识介绍

一、数据挖掘技术的基本概念 随着计算机技术的发展,各行各业都开始采用计算机及相应的信息技术进行管理和运营,这使得企业生成、收集、存贮和处理数据的能力大大提高,数...

3066
来自专栏机器之心

观点 | 人工智能的三个阶段:我们正从统计学习走向语境顺应

选自DataScienceCentral 作者:William Vorhies 机器之心编译 参与:黄小天、微胖、李泽南 我们处在人工智能的哪个阶段?我们将要去...

3609
来自专栏AI科技评论

观点 | UC伯克利教授迈克尔·乔丹采访:人类对机器学习期待过高,机器学习的发展还应当更广阔

AI 科技评论按:2017年6月21日至22日,腾讯·云+未来峰会在深圳举行。在主题为“机器学习:创新视角,直面挑战”的演讲 - AI 科技评论后,AI 科技评...

3056
来自专栏专知

剑桥大学计算机系博士孙琳:自然语言处理(NLP)的发展以及在教育领域的应用情况(附报告pdf下载)

? ? 大家好!我是孙琳,很高兴参加TAB教育科技论坛,今天分享的题目是“教育应用中的自然语言处理”。首先我先做一下自我介绍,我是剑桥大学计算机系的博士,博士...

6275
来自专栏SDNLAB

为什么机器学习难以应用于网络?

机器学习正在成为网络公司之间的一个流行词,尤其是近期谷歌、HPE和诺基亚都宣传了机器学习功能。但是机器学习并不适用于网络本身,这是为什么呢? ? Brocade...

3215
来自专栏人工智能快报

通往未来人工智能的三条途径:量子计算、神经形态计算和超级计算

美国“数据科学中心”(Data Science Central)网站的编辑总监William Vorhies撰文表示,量子计算、神经形态计算和超级计算可以带来更...

3776
来自专栏PPV课数据科学社区

【观点】大数据与统计新思维

译著《大数据时代》( 英国 ViktorMayer-Schǒnberger,Kenneth Cukier 著) 和《驾驭大数据》( 美国 Bill Frank...

2937
来自专栏机器之心

人物 | Yann LeCun:让Facebook学会思考的人

选自BuzzFeed 作者:Alex Kantrowitz 机器之心编译 Yann LeCun 是深度学习研究领域内一个响当当的名字。作为 Faceboo...

2779
来自专栏人工智能头条

大伽「趣」说AI:腾讯云在多个场景中的AI落地实践

AI技术已经家喻户晓。不论是移动终端设备,还是企业系统平台,都开始集成AI能力,现阶段看,AI融合到各个行业的潜力非常巨大,能够在众多场景中发挥作用,比如云计算...

1554

扫码关注云+社区

领取腾讯云代金券