【机器学习】机器学习工作职位需要的7项技能

机器学习经常与人工智能紧密相连,在不考虑显式编程的情况下,机器学习可以使计算机具备完成特定任务的能力,例如识别,诊断,规划,机器人控制和预测等。它往往聚焦于算法创新,即在面对新数据时,其自身能够发生演化。

在某种程度上,机器学习与数据挖掘很相似。它们都是通过数据来获取模式。然而,与人类可理解的数据提取方式不同—通常是按照数据挖掘应用的方式——机器学习主要是使用数据去提升程序本身的理解能力。机器学习程序能够在数据中检测出相关模式并相应的进行程序行为的调整。

现在,你是否准备去了解一些获得机器学习工作必备的技术了呢?一个优秀的求 职者应该对以下各方面知识都有很深的理解:算法和数学应用,问题解决能力和分析 技巧,概率统计和诸如 Python/C++/R/Java 等编程语言。此外,机器学习还需要求职 者具有与生俱来的好奇心,因此,如何你从来没有失去过自孩童时代就有的好奇心, 那么,你就能顺理成章在机器学习领域取得成就。这里详细的列出一个的必备的技能清单

1. Python/C++/R/Java

如果你希望在机器学习领域获得一份工作,那么在某种程度上,你很可能必须学习这里所列出的所有编程语言。C++ 能够加速代码执行速度。R 在统计绘图方面十分出 色,Hadoop 是以 Java 为基础的,因此,你可能需要在 Java 中完成 Map/Reduce 算法。

2. Probability and Statistics(概率和统计)

概率和统计理论能够帮助你学习算法。很多常用的模型例如朴素贝叶斯、高斯混合模型和隐马尔可夫模型等,需要你有很好的概率和统计背景知识去理解。甚至你需要全身心的投入并且研究测度理论,同时需要理解一些统计指标,这些指标常作为模型评价标准,例如混淆矩阵,ROC曲线, P值等。

3. Applied Math and Algorithms(数学和算法)

对算法理论有相当深入的认识并且了解算法运行的机制, 能够帮助你对模型加以区分, 例如支持向量机模型 (译者注:支持向量机模型包括许多不同的核函数,核函数的不同, 具体模型的原理、应用和结论也不同)。 你需要理解一些数学方法, 例如梯度下降, 凸优化, 拉格朗格方法, 二次规划, 偏微分方程等类似的理论和方法。更重要的,你要习惯于综合使用这些方法技术。

4. Distributed Computing(分布式计算)

大多数时候,机器学习需要处理大型的数据集。使用单机无法处理这些数据,因此,你需要通过集群进行分布式计算。像 Apache Hadoop 架构和 Amazon 的 EC2 云服务等项目能够使这一过程更加容易, 从而提高成本效益。

5. Expanding the Expertise in Unix Tools(使用Unix工具来拓宽你的专业知识)

你应该掌握专门为以下工作而设计的Unix命令或工具: cat, grep, nd, awk, sed, sort, cut, tr 等。由于所有这些处理过程都运行于基于linux平台的设备, 因此, 你需要熟悉这些工具。学习并很好的使用这些工具, 会使你的工作更加轻松。

6. Learning more about Advanced Signal Processing techniques(学习一些信号处理技术)

特征提取是机器学习最重根据部分之一。不同问题需要不同的解决方案, 你可以使用非常酷的高级信号处理算法,例如小波变换,剪切波变换,曲线波,轮廓波和 bandlets 变换等。学习时频分析技术,并用它来解决你的问题。如果你还不知道傅里 叶分析和卷积原理,你同样也需要学习这些知识。二进制码信号处理技术是解决问题 的重要方法。

7. Other skills

(a) 提升自己:你必须时刻保持与新技术的同步以应对将要到来的挑战。这也意 味着你必须注意以下几方面的最新动态:关于这些工具理论的变更日志和会议,算 法的研究论文、博客和会议视频等。

(b) 大量阅读。阅读一些像 Google Map-Reduce, Google File System, Google Big Table,以及 Unreasonable Effectiveness of Data 之类的 论文。此外,网上也有许多免费的机器学习书籍,你同样也应该读一读。

Happy Machine Learning!

译后语:世界上最痛苦的事是什么?就是你以为是原创,其实别人早就做 过了...,这篇译文的题目是 7 key skills required for Machine Learning jobs, 另有一篇 来自于问答 SNS 网站 Quora 的文章 What skills are needed for machine learning jobs?, 两者相似度很高,后者内容更全面,并且已有网友羽林飞扬翻译过了。可悲的 是,我翻译到最后,在查找一个专业术语的译意时才发现的,早知道就不做这无 用功了 (我翻译的真是好烂)...,这里贴出该网友的译文地址供大家阅读: http://www.cnblogs.com/zhengyuhong/p/3381331.html。

原文发布于微信公众号 - 数据科学与人工智能(DS_AI_shujuren)

原文发表时间:2015-11-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

业界 | 对比了六家计算机视觉API,发现最好的竟然是...

选自free Code Camp 作者:Mariya Yao 机器之心编译 参与:蒋思源、刘晓坤 本文通过吉娃娃与松饼的图像对比了流行的六大计算机视觉API,...

38260
来自专栏机器之心

资源 | 吴恩达《ML Yearning》52章译文,一份很有诚意的GitHub项目

在该 GitHub 项目中,读者可直接下载各章节译文的 MarkDown 文档,也可以下载 PDF 版的英文原版。此外为了有更好的阅读体验,作者为这个项目构建了...

8510
来自专栏人工智能头条

深度学习成长的烦恼

11710
来自专栏量子位

Google发布神经机器翻译教程,带你从零开始搭建NMT系统

李林 编译自 Google Research Blog 量子位 报道 | 公众号 QbitAI ? 想自己在TensorFlow上搭神经机器翻译(NMT)模型?...

47380
来自专栏数据科学与人工智能

【算法】推荐算法--协同过滤

协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内...

18110
来自专栏数据科学与人工智能

机器学习工作职位需要的7项技能

机器学习经常与人工智能紧密相连,在不考虑显式编程的情况下,机器学习可以使计算机具备完成特定任务的能力,例如识别,诊断,规划,机器人控制和预测等。它往往聚焦于算法...

27470
来自专栏数据科学与人工智能

【应用】信用评分:第3部分 - 数据准备和探索性数据分析

因此,**数据准备是任何数据挖掘项目的关键方面,包括信用评分卡的开发。 **这是CRISP-DM周期中最具挑战性和耗时的阶段。 项目总时间中至少70%,有时多于...

13910
来自专栏灯塔大数据

最新顶尖数据分析师必用的15大Python库(下)

近几年来,Python在数据科学界受到大量关注,我们在这里为数据科学界的科学家和工程师列举出了最顶尖的Python库。 因为这里提到的所有的库都是开源的,所...

38240
来自专栏数据派THU

当你的深度学习模型走进死胡同,问问自己这5个问题

来源:量子位 编译:安妮 本文长度为2509字,建议阅读4分钟 本文为你介绍深度学习中应该思考的5个问题。 深度学习是一项庞大又复杂的工程,在建立深度学习模型时...

20190
来自专栏量子位

当你的深度学习模型走进死胡同,问问自己这5个问题

安妮 编译自 Semantics3官方博客 量子位 出品 | 公众号 QbitAI ? 深度学习是一项庞大又复杂的工程,在建立深度学习模型时,走进死胡同被迫从头...

40240

扫码关注云+社区

领取腾讯云代金券