【机器学习】人工智能\\机器学习\\统计学\\数据挖掘之间有什么区别?

前段时间,作者在 stats.stackexchange.com(译注:国外的一个系列问答网站,其中Stack Overflow是其中一个子站)看到一个很有意思的问题,引起了他的注意。经过阅读和分析 StackExchange 上的所有答案后,他觉得有必将其想法写下来。

以下是 StackExchange 上的问题:

人工智能、机器学习、统计学和数据挖掘有什么区别?

是否可以这样说,它们是利用不同方法解决相似问题的四个领域?它们之间到底有什么共同点和不同点?如果它们之间有层次等级的区分,应该是怎样一回事?

我假定题主是想得到一个清晰的图,上面有各个领域清晰的分界线。因此,在这里我尝试用我最简单的方式来解释这个问题。

机器学习是一门涉及自学习算法发展的科学。这类算法本质上是通用的,可以应用到众多相关问题的领域。

数据挖掘是一类实用的应用算法(大多是机器学习算法),利用各个领域产出的数据来解决各个领域相关的问题。

统计学是一门研究怎样收集,组织,分析和解释数据中的数字化信息的科学。统计学可以分为两大类:描述统计学和推断统计学。描述统计学涉及组织,累加和描绘数据中的信息。推断统计学涉及使用抽样数据来推断总体。

机器学习利用统计学(大多是推断统计学)来开发自学习算法。

数据挖掘则是在从算法得到的结果上应用统计学(大多是描述统计学),来解决问题。

数据挖掘作为一门学科兴起,旨在各种各样的行业中(尤其是商业)求解问题,求解过程需要用到不同研究领域的不同技术和实践。

1960年求解问题的从业者使用术语Data fishing来称呼他们所做的工作。1989年Gregory Piatetsky Shapiro使用术语knowledge Discovery in the Database(KDD,数据集上的知识发掘)。1990年一家公司在商标上使用术语数据挖掘来描述他们的工作。现如今现如今数据挖掘和KDD两词可以交换使用。

人工智能这门科学的目的在于开发一个模拟人类能在某种环境下做出反应和行为的系统或软件。由于这个领域极其广泛,人工智能将其目标定义为多个子目标。然后每个子目标就都发展成了一个独立的研究分支。

这里是一张人工智能所要完成的主要目标列表(亦称为AI问题)

1、Reasoning(推理) 2、Knowledge representation(知识表示) 3、Automated planning and scheduling(自动规划) 4、Machine learning(机器学习) 5、Natural language processing(自然语言处理) 6、Computer vision(计算机视觉) 7、Robotics(机器人学) 8、General intelligence or strong AI(通用智能或强人工智能)

正如列表中提到的,机器学习这一研究领域是由AI的一个子目标发展而来,用来帮助机器和软件进行自我学习来解决遇到的问题。

自然语言处理是另一个由AI的一个子目标发展而来的研究领域,用来帮助机器与真人进行沟通交流。

计算机视觉是由AI的目标而兴起的一个领域,用来辨认和识别机器所能看到的物体。

机器人学也是脱胎于AI的目标,用来给一个机器赋予实际的形态以完成实际的动作。

它们之间有层次等级的区分吗,应该是怎样一回事?

解释这些科学和研究层次关系的一个方法是分析其历史。

科学和研究的起源

统计学——1749年 人工智能——1940年 机器学习——1946年 数据挖掘——1980年

统计学的历史公认起源于1749年左右,用来表征信息。研究人员使用统计学来表征国家的经济水平以及表征用于军事用途的物质资源。随后统计学的用途扩充到数据的分析及其组织。

人工智能的历史碰巧存在两种类型:经典的和现代的。经典人工智能可在古时的故事和著作中看得到。然而,1940年当人们在描述用机器模仿人类的思想时才出现了现代人工智能。

1946年,作为AI的分支,机器学习的起源出现了,它的目标在于使机器不通过编程和明确的硬接线进行自我学习来对目标求解。

是否可以这样说,它们是利用不同方法解决相似问题的四个领域?

可以这么来说(统计学,人工智能和机器学习)是高度相互依赖的领域,没有其他领域的引领和帮助,他们不能够单独存在。很高兴能看到这三个领域是一个全局领域而非三个有所隔阂的领域。

正如这三个领域是一个全局领域,它们在解决共同目标时发挥了自己的优势。因此,该方案适用于许多不同领域中,因为隐含的核心问题是一致的。

接下来是该数据挖掘出场了,它从全局获取解决方案并应用到不同的领域(商业、军事、医学、太空)来解决同一隐含本质的问题。这也是数据挖掘扩大其受欢迎程度的时期。

我希望我的解释已经回答了答主所提问一切疑问,我相信这能清晰地帮助任何一个想要理解这四个领域关键点的人们。如果你对该话题有任何想要说的或者要分享的,请在评论里写下你的想法。

原文发布于微信公众号 - 数据科学与人工智能(DS_AI_shujuren)

原文发表时间:2015-11-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【行业报告】AMiner发布最新人工智能芯片研究报告

【导读】随着AI技术的发展,从基础算法,底层硬件,工具框架到实际应用场景,目前人工智能已经全面开花。 作为人工智能核心的底层硬件AI芯片,也同样经历了多次的起伏...

681
来自专栏全栈数据化营销

数据分析:研究奥迪、宝马、奔驰新能源汽车用户特点与差异

新能源汽车的推广是国家战略。中国新能源汽车市场已经起步,并且发展迅速。国内厂商已经争相争夺新能源车的市场份额。在国内有比亚迪、北汽新能源等引领者,传统上的强势进...

3716
来自专栏AI科技评论

深度 | 论文被拒千百遍,团队不受待见,Yann LeCun为何仍待深度学习如初恋?

AI科技评论按:Yann LeCun是人工智能神经网络方面的大牛,现在是Facebook人工智能研发团队的领军人物。可是他的研究之路并不是一帆风顺,在神经网络变...

3377
来自专栏云计算

云端生存思考之三:算法制胜,工程亦然

什么是云计算?云计算代表的是社会的量化管理趋势,以大数据的形式表达出来。由于宣传的原因,人人以为大数据就是统计,云计算就是Hadoop,其实我们工程领域的某些计...

2025
来自专栏AI科技评论

百度IDL主任林元庆解读:人工智能技术研发的四大支柱

近日,百度深度学习实验室主任林元庆在百度年终媒体分享会上做了《看懂AI-百度技术开放日》的演讲,从客观层面阐述了人工智能技术研发的四大支柱,为我们呈现了让人工智...

37713
来自专栏达观数据

达观数据:中国网民对媒体满意度整体下滑,上升的关键绝招竟是这些

对于中国网民来说,8 月最火事件,无疑是王宝强离婚和里约奥运会。而这两件事也成了媒体争先报道的宠儿。王宝强离婚事件众说纷纭,奥运会相关报道也随着新媒体的发展而逐...

35913
来自专栏AI科技评论

Jeff Dean两年AMA全盘点:26个关于谷歌大脑和机器学习未来的问题

AI科技评论按:前两天,谷歌大脑团队又在Reddit上做了一次AMA(Ask me anything)活动。 去年8月时候谷歌大脑团队也在Reddit上做过同样...

34110
来自专栏about云

人工智能、机器学习、统计学、数据挖掘之间有什么区别?

人工智能、机器学习、统计学和数据挖掘有什么区别? 是否可以这样说,它们是利用不同方法解决相似问题的四个领域?它们之间到底有什么共同点和不同点?如果它们之间有层次...

4078
来自专栏数据猿

北京大学新媒体研究院教授刘德寰:未来数据分析是分析人

<数据猿导读> 北京大学社会学博士、北京大学新媒体研究院教授刘德寰在“无数据不智能”的主论坛上,围绕“有效大数据运算的两个路径假说及意义”进行演讲。他直言:目前...

3045
来自专栏钱塘大数据

人工智能/数据挖掘/机器学习/统计学之间有什么区别?

时间过的真快,本期为“数据挖掘”专题推送的最后一期了,520这天,就给大家介绍个特有意思的文章,技术男们有福了,超级干货! 前段时间,作者在 stats.sta...

2924

扫码关注云+社区