【深度学习】五个问题迅速了解“深度学习”

深度学习领域是计算机科学一个新兴领域,通俗说来就是构建像人脑一样处理数据的计算机程序。深度学习首先发起于学术界,目前各大互联网巨头也纷纷投入研究,随着媒体的报道增多,“深度学习”也成为近期热词。例如,媒体在报道平安科技研发的人脸识别算法时,就会提到该算法基于神经网络和深度学习。有分析人士将“深度学习”的市场形容为一个金矿,称该技术有望取代整个行业和应用的大量人力干预。

▼▼▼

那么,深度学习到底是什么呢?

好信侠就试着简化深度学习的概念

用五个问题帮你快速了解。

▼▼▼

➤ 深度学习是什么?

深度学习是机器学习领域中对模式(声音、图像等等)进行建模的一种方法,它也是一种基于统计的概率模型。在对各种模式进行建模之后,便可以对各种模式进行识别了,例如待建模的模式是声音的话,那么这种识别便可以理解为语音识别。而类比来理解,如果说将机器学习算法类比为排序算法,那么深度学习算法便是众多排序算法当中的一种(例如冒泡排序),这种算法在某些应用场景中,会具有一定的优势。

为什么我们需要深度学习?

好吧,答案很简单。可以用更多的数据或是更好的算法来提高学习算法的结果。对某些应用而言,深度学习在大数据集上的表现比其他机器学习(ML)方法都要好(稍后将讨论例外情况)。这些又如何转化为现实生活中的情形呢?深度学习更适合无标记数据,因而它并不局限于以实体识别为主的自然语言处理(NLP)领域。

➤ 深度学习与机器学习相比表现如何?

最通俗地说,深度学习探索了神经网络的概率空间,这是传统的机器学习工具所做不到的。熟悉ML的人会知道,与其他工具相比,深度学习算法更适合未标记数据,更适合强特征提取(深度框架),也更适合于模式识别(图像、文本、音频)。这多半可以归因于它能减少模型中自由参数的数目。

深度学习的“深度”体现在哪里

论及深度学习中的“深度”一词,人们从感性上可能会认为,深度学习相对于传统的机器学习算法,能够做更多的事情,是一种更为“高深”的算法。而事实可能并非我们想象的那样,因为从算法输入输出的角度考虑,深度学习算法与传统的有监督机器学习算法的输入输出都是类似的,无论是最简单的Logistic Regression,还是到后来的SVM、boosting等算法,它们能够做的事情都是类似的。正如无论使用什么样的排序算法,它们的输入和预期的输出都是类似的,区别在于各种算法在不同环境下的性能不同。

那么深度学习的“深度”本质上又指的是什么呢?深度学习的学名又叫深层神经网络(Deep Neural Networks ),是从很久以前的人工神经网络(Artificial Neural Networks)模型发展而来。这种模型一般采用计算机科学中的图模型来直观的表达,而深度学习的“深度”便指的是图模型的层数以及每一层的节点数量,相对于之前的神经网络而言,有了很大程度的提升。

深度学习也有许多种不同的实现形式,根据解决问题、应用领域甚至论文作者取名创意的不同,它也有不同的名字:例如卷积神经网络(Convolutional Neural Networks)、深度置信网络(Deep BeliefNetworks)、受限玻尔兹曼机(Restricted Boltzmann Machines)、深度玻尔兹曼机(DeepBoltzmann Machines)、递归自动编码器(Recursive Autoencoders)、深度表达(Deep Representation)等等。不过究其本质来讲,都是类似的深度神经网络模型。

当然,深度学习现在备受关注的另外一个原因,当然是因为在某些场景下,这种算法模式识别的精度,超过了绝大多数目前已有的算法。而在最近,深度学习的提出者修改了其实现代码的Bug之后,这种模型识别精度又有了很大的提升。这些因素共同引起了深层神经网络模型,或者说深度学习这样一个概念的新的热潮。

➤ 深度学习的优点

为了进行某种模式的识别,通常的做法首先是以某种方式,提取这个模式中的特征。这个特征的提取方式有时候是人工设计或指定的,有时候是在给定相对较多数据的前提下,由计算机自己总结出来的。深度学习提出了一种让计算机自动学习出模式特征的方法,并将特征学习融入到了建立模型的过程中,从而减少了人为设计特征造成的不完备性。而目前以深度学习为核心的某些机器学习应用,在满足特定条件的应用场景下,已经达到了超越现有算法的识别或分类性能。

原文发布于微信公众号 - 数据科学与人工智能(DS_AI_shujuren)

原文发表时间:2016-02-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

大会 | CVPR 18论文:基于空洞卷积神经网络的高密度人群理解方法

AI 科技评论按:本文作者为美国伊利诺伊大学(UIUC)张晓帆,他为 AI 科技评论撰写了基于 CVPR 录用论文《CSRNet: Dilated Convol...

354100
来自专栏机器之心

业界 | OpenAI提出新型元学习方法EPG,调整损失函数实现新任务上的快速训练

选自OpenAI 机器之心编译 参与:路雪、刘晓坤 刚刚,OpenAI 提出一种实验性元学习方法 Evolved Policy Gradients(EPG),该...

37690
来自专栏进击的程序猿

基于隐变量的推荐模型基于隐变量的推荐模型

上一篇介绍了协同过滤,其重点就是在人-物品矩阵上,其中心思想是去对人或者物品进行聚类,从而找到相似人或者相似物品,用群体的智慧为个人进行推荐,但是,这种近邻模型...

21140
来自专栏AI研习社

数据挖掘竞赛的套路就在这里了,看完本文全明白!

前言 刚好在暑假通过参加 Kaggle 的 Zillow Prize 比赛来让我在数据挖掘和机器学习中完成了菜逼到 Level 1 的转变,借这个平台总结一...

52480
来自专栏开发 & 算法杂谈

统计学习方法-提升方法

最近再看统计学习方法这本书第八章-提升方法,把书上以及网上的一些知识点归纳了一下,分享给和我一样在机器学习入门道路上的小伙伴~

26130
来自专栏AI科技大本营的专栏

吴恩达说“将引领下一波机器学习技术”的迁移学习到底好在哪?

【导读】两年前,吴恩达在 NIPS 2016 的 Tutorial 上曾说“在监督学习之后,迁移学习将引领下一波机器学习技术商业化浪潮。”现实中不断有新场景的出...

8930
来自专栏人工智能头条

计算机视觉需要更多几何洞察

19340
来自专栏AI科技评论

学界 | ImageNet 带来的预训练模型之风,马上要吹进 NLP 领域了

AI 科技评论按:对于计算机视觉领域的研究人员、产品开发人员来说,在 ImageNet 上预训练模型然后再用自己的任务专用数据训练模型已经成了惯例。但是自然语言...

13230
来自专栏AI科技评论

学界|北京大学王立威教授:机器学习理论的回顾与展望(一)

本文由奕欣,夏睿联合编辑。 AI科技评论按:本文根据王立威教授在中国人工智能学会AIDL第二期人工智能前沿讲习班*机器学习前沿所作报告《机器学习理论:回顾与展望...

393110
来自专栏AI研习社

数据挖掘竞赛的套路就在这里了,看完本文全明白!

刚好在暑假通过参加 Kaggle 的 Zillow Prize 比赛来让我在数据挖掘和机器学习中完成了菜逼到 Level 1 的转变,借这个平台总结一下比赛的...

51260

扫码关注云+社区

领取腾讯云代金券