深度学习以及卷积基础

作者:石文华

编辑:龚 赛

介 绍

深度学习是机器学习的一个分支,是基于数据来学习表示数据的一组算法。下面我们列出最受欢迎的一些深度学习算法。

  • 卷积神经网络
  • 深度信念网络
  • 自动编码器
  • 递归神经网络(RNN / LSTM / GRU)
  • 对抗生成网络(GAN)

深度学习的目的之一是他们将取代手工制作的特征提取。这个想法是,他们将从给定的数据中“学习”到所需的最佳特征。

层与层

深度学习模型由多层构成,在人工神经网络的情况下,具有2个以上隐藏层的多层感知器(MLP)已经是深度模型。 作为一个经验法则,深层模型有可能比浅层模型表现更好。但是,越深的神经网络你需要越多的数据来避免过拟合。

层类型

这里列出一些最常用的图层:

  1. 卷积层
  2. 最大/平均池化层
  3. Dropout层
  4. 批量标准化层
  5. 全连接层
  6. Relu,Tanh,Sigmoid层(非线性层)
  7. Softmax,交叉熵,SVM,欧几里得(损失层)

避免过拟合(正则化)

除了获得更多的数据之外,还有一些技巧用于解决过度拟合问题,这里列出了一些最常见的技术:

  • Dropout
  • L2正则化
  • 数据增强

Dropout

这是一种在训练期间随机关闭全连接层中一些神经元的技术。

Dropout迫使全连接层以不同的方式学习相同的概念。

L2正则化

最常见的正则化形式是L2正则化,L2正则化是给损失函数添加一个额外的惩罚项,这个惩罚项也就是我们正在优化的所有权重/参数的平方值。对于神经网络的每一个参数ω,我们加入一项0.5λω²到损失函数中去,λ表示正则化强度的参数,当我们反向传播计算导数时,我们只是用了0.5λ作为正则化的强度。由于使用这种正规化,非常高价值的权重受到严重惩罚。所以我们更倾向于使用一层的所有权重作为输入,而不是少数一些权重带替代。这种方法的效果比较好,因为我们的模型权重将被最大限度地利用,并且我们有更少未使用的权重。

除了L2正则化之外,还有L1正则化和Max Norm,但这里没有讨论,因为L2一般表现更好。

数据增强

通过对输入数据进行一些转换,可以合成新的训练样例。例如,进行图像翻转或随机移动RGB值。在2012年Imagenet竞赛期间,Alex Krizhevesky(Alexnet)使用了2048倍的因子进行数据增强,这意味着用于训练其模型的数据集实际上比开始时大2048倍,并且在不使用数据增强的情况下改进了泛化。

分层的特征表示

它是让学习算法找到从输入到更深层的最佳表示。 浅层学会用简单的形式表示数据,深层用前面学到的特征来学习更高纬度的特征来表示数据。

卷 积

卷积是一种数学运算,它对两个函数(信号)乘积进行积分,其中一个信号是被翻转。例如下面我们对2个信号f(t)和g(t)进行卷积。

首先要做的是水平翻转(180度)信号g,然后将翻转后的g滑过f,对应相乘并累加所有的值。 conv(a,b)== conv(b,a)的结果是一样的, 在这种情况下,规定蓝色信号 F(τ)F(τ) 是我们的输入信号和 G(t )G(Ť) 作为我们的卷积核,当使用卷积来过滤信号时使用术语卷积核。

输出一维信号

在一维卷积的情况下,输出尺寸计算如下: outputSize=(InputSize−KernelSize)+1

卷积的应用

人们在以下用例中对信号处理使用卷积:

  • 滤波器信号(1D音频,2D图像处理)
  • 检查一个信号与另一个信号的相关程度
  • 在信号中查找模式

在matlab和python(numpy)中的简单例子

下面我们将两个信号x =(0,1,2,3,4)与w =(1,-1,2)进行卷积。

手工操作

为了更好地理解卷积的概念,我们手工完成上面的例子。我们要卷积2个信号(x,w)。首先是水平翻转W(或向左旋转180度)

之后,我们将翻转的W滑过输入X.

注意到在步骤3,4,5中,翻转后的窗口完全位于输入信号的内部。称为“有效”卷积。在翻转窗口不完全位于输入窗口(X)内部的情况下,我们可以将其视为零,只计算位于窗口内的数据,例如在步骤1中,我们将1乘以零,其余部分将被忽略。

对输入进行填充

为了保持卷积结果大小与输入大小相同,并避免称为循环卷积的效应,我们用零填充信号。 你把零放在哪个位置取决于你想要做什么,例如:在1D的情况下,你可以在每一端连接它们,但在2D上它通常放置在原始信号周围。

在matlab上,你可以使用命令'padarray'来填充输入信号: >> x

x(:,:,1) =

 1     1     0     2     0
 2     2     2     2     1
 0     0     0     2     1
 2     2     2     2     1
 2     0     2     2     1

x(:,:,2) =

 2     1     0     0     0
 0     2     0     1     0
 1     0     1     2     0
 1     2     0     2     1
 1     2     1     2     2

x(:,:,3) =

 2     1     1     2     2
 1     1     1     0     0
 2     0     1     0     2
 0     2     0     2     1
 0     0     2     1     0

>> padarray(x,[1 1])

ans(:,:,1) =

 0     0     0     0     0     0     0
 0     1     1     0     2     0     0
 0     2     2     2     2     1     0
 0     0     0     0     2     1     0
 0     2     2     2     2     1     0
 0     2     0     2     2     1     0
 0     0     0     0     0     0     0

ans(:,:,2) =

 0     0     0     0     0     0     0
 0     2     1     0     0     0     0
 0     0     2     0     1     0     0
 0     1     0     1     2     0     0
 0     1     2     0     2     1     0
 0     1     2     1     2     2     0
 0     0     0     0     0     0     0

ans(:,:,3) =

 0     0     0     0     0     0     0
 0     2     1     1     2     2     0
 0     1     1     1     0     0     0
 0     2     0     1     0     2     0
 0     0     2     0     2     1     0
 0     0     0     2     1     0     0
 0     0     0     0     0     0     0

将卷积转化为计算图

将操作转化为计算图,更容易计算每个节点参数的偏导数,这里我们演示将之前的一维卷积转化为计算图,这也可以扩展到二维卷积。

计算图的创建是在翻转的内核完全插入被卷积的数据之前的。

之后我们将使用这个图来推断卷积层的输入(x)和权重(w)的梯度。

2D卷积

现在我们延伸到第二个维度。2D卷积被用作图像滤波器。下面是一个2D图像卷积的例子:

Matlab与Python示例

手工操作

首先,我们应该翻转内核,然后在输入信号上滑动内核。

步 长

默认情况下,当我们进行卷积运算时,我们的窗口每次移动一个像素(步幅= 1),但是在卷积神经网络中我们需要移动多个像素。例如,在使用大小为2的内核进行卷积时,我们将使用2的步幅。将步幅和内核大小都设置为2将导致输出沿着两个维度恰好为输入大小的一半。 观察红色内核窗口下方的移动远远多于一个像素。

2D的输出尺寸

下面提供了一个公式计算我们卷积之后的输出尺寸 。 如果我们考虑将由P填充的空间大小[H,W]的输入与大小为F的方形核并使用步长S进行卷积,那么卷积的输出大小被定义为:

F是内核的大小,通常我们使用方形内核,所以F既是内核的宽度又是高度。

实现卷积运算

下面的示例将对一个5x5x3的输入进行卷积,其中具有以下参数Stride=2,Pad=1,F=3(3x3内核)和K=2(两个滤波器)的conv层。 我们的输入有3个通道,所以需要3x3x3的内核权重。有2个过滤器(K = 2),所以最后会有2个输出。计算这两个输出的大小为:(5 - 3 + 2)/ 2 + 1 = 3。得到最终的尺寸(3x3x2)。

仔细看看这个例子,我们需要计算2个卷积,不要忘了给每个3x3x3滤波器(w0,w1)添加偏差。

参考文献

  • https://en.wikipedia.org/wiki/Convolution
  • https://www.khanacademy.org/math/differential-equations/laplace-transform/convolution-integral/v/introduction-to-the-convolution
  • http://www.dspguide.com/ch6/2.htm

原文发布于微信公众号 - 机器学习算法全栈工程师(Jeemy110)

原文发表时间:2018-03-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能LeadAI

ResNet原理及其在TF-Slim中的实现

摘要 微软的深度残差网络ResNet源于2016年CVPR最佳论文---图像识别中的深度残差学习(Deep Residual Learning for Imag...

4244
来自专栏大数据挖掘DT机器学习

机器学习——感知器学习算法

这里开始介绍神经网络方面的知识(Neural Networks)。首先我们会介绍几个监督式学习的算法,随后便是非监督式的学习。 一、感知器学习算法基本介绍 1...

3688
来自专栏包子铺里聊IT

经典智能算法快速入门之神经网络——技术篇

在上一篇文章里,小编给大家概括地介绍了下神经网络的历史和应用。这次,小编要给大家细细讲解下神经网络的组成,和几种常见神经网络的模型及其适用领域。 基本组成 顾名...

3519
来自专栏编程

梯度下降法及其Python实现

梯度下降法及其Python实现 基本介绍 梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问...

28210
来自专栏数据科学与人工智能

【机器学习】神经网络技术篇

在上一篇文章里,小编给大家概括地介绍了下神经网络的历史和应用。这次,小编要给大家细细讲解下神经网络的组成,和几种常见神经网络的模型及其适用领域。 基本组成 顾名...

2557
来自专栏企鹅号快讯

机器学习算法实战

目 录 逻辑回归算法步骤简述 选择输入函数:sigmoid函数 选择优化算法:梯度上升法 观察数据集 批梯度上升训练 随机梯度上升训练 推荐阅读时间: 10m...

1925
来自专栏瓜大三哥

感知器神经网络

感知器是一种前馈人工神经网络,是人工神经网络中的一种典型结构。感知器具有分层结构,信息从输入层进入网络,逐层向前传递到输出层。根据感知器神经元变换函数、隐层数以...

23410
来自专栏专知

【干货】走进神经网络:直观地了解神经网络工作机制

【导读】1月4日,Mateusz Dziubek发布了一篇基础的介绍神经网络的博文,作者用一种直观的方法来解释神经网络以及其学习过程,作者首先探讨了导致神经网络...

36113
来自专栏云时之间

深度学习与TensorFlow:理解卷积神经网络

1554
来自专栏机器之心

教程 | 一文简述如何使用嵌套交叉验证方法处理时序数据

1843

扫码关注云+社区