【直播】我的基因组47:测序深度和GC含量的关系

在前面我们用 ChIP-seq 的分析方法可视化了一下我的 WGS数据,结果我们的测序深度分布居然是跟基因组的genomic feature相关

比如在TSS附近,就很明显看到了一个测序深度峰值(具体内容点击 【直播】我的基因组 44:比对文件画profile和heatmap图),但是前面我们并没有给出直接的解答而是简单的提到这是二代测序的特点——GC含量片段偏好性

作为一个合格的生物信息学工程师,我当然要把这个理论用自己的代码和数据来亲身实践一遍。

以下为分析过程:

首先,把全基因组的bam文件用 mpileup模式输出,根据 1000bp 的窗口滑动来统计每个窗口的测到的碱基数,GC碱基数,测序总深度!(代码比较复杂,一般人可能理解不来)

samtools mpileup -f ~/reference/genome/human_g1k_v37/human_g1k_v37.fasta ../P_jmzeng.final.bam|head -1000000 |perl -alne '{$pos=int($F[1]/1000); $key="$F[0]\t$pos";$GC{$key}++ if $F[2]=~/[GC]/;$counts_sum{$key}+=$F[3];$number{$key}++;}END{print "$_\t$number{$_}\t$GC{$_}\t$counts_sum{$_}" foreach sort{$a<=>$b} keys %number}'

上面的代码写的不好,跑10万行需要 4s,跑一百万行需要36s,我估计把这8.9亿行的bam运行完,这样推算是10小时即可,但事实上我已经跑了一整天了!我感觉自己的脚本能力在面对大数据(300Gb的全基因组)有点捉鸡!

不过不要紧,我们就拿前面的百万行数据做一个测试就好了。

结果如下:

说明 前面两行是窗口的坐标,第几号染色体的第几个窗口,后面3行是数据,分别是每个窗口的测到的碱基数,GC碱基数,测序总深度。

接下来,将上面的文件导入到 R里进行可视化。

PS:这个线性回归图不会看的,自己去搜索或者去看生信技能树论坛的文章: http://www.biotrainee.com/thread-695-1-1.html (复制链接到浏览器打开或者点击最下方的阅读原文)。 我觉得我这次画的图还不错,很明显能看到这个趋势,GC含量比较高的窗口,有着相应比较高的测序深度!

至此,完美的证明了文章开头的结论!

给自己一百个赞,虽然我没有对全基因组数据做验证,但是基因组差异并没有很大,我也随机抽样测试了几次都有这个趋势。

最后,给出我的 R代码如下:

a=read.table('../tmp.txt')
a$GC = a[,4]/a[,3]
a$depth = a[,5]/a[,3]
a = a[a$depth<100,]
plot(a$GC,a$depth)
library(ggplot2)
# GET EQUATION AND R-SQUARED AS STRING
# SOURCE: http://goo.gl/K4yh
lm_eqn <- function(x,y){
m <- lm(y ~ x);
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,
list(a = format(coef(m)[1], digits = 2),
b = format(coef(m)[2], digits = 2),
r2 = format(summary(m)$r.squared, digits = 3)))
as.character(as.expression(eq));
}
p=ggplot(a,aes(GC,depth)) + geom_point() +
geom_smooth(method='lm',formula=y~x)+
geom_text(x = 0.5, y = 100, label = lm_eqn(a$GC , a$depth), parse = TRUE)
p=p+theme_set(theme_set(theme_bw(base_size=20)))
p=p+theme(text=element_text(face='bold'),
axis.text.x=element_text(angle=30,hjust=1,size =15),
plot.title = element_text(hjust = 0.5) ,
panel.grid = element_blank(),
#panel.border = element_blank()
)
print(p)

关于画图,大家可以参考下面这个链接:http://stackoverflow.com/questions/7549694/ggplot2-adding-regression-line-equation-and-r2-on-graph

文:Jimmy

校对编辑:一只思考问题的熊

原文发布于微信公众号 - 生信技能树(biotrainee)

原文发表时间:2017-01-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏生信技能树

参考基因组没有,经费也没那么多,怎么办?

尽管目前已经有大量物种基因组释放出来,但还是存在许多物种是没有参考基因组。使用基于酶切的二代测序技术,如RAD-seq,GBS,构建遗传图谱是研究无参考物种比较...

3277
来自专栏ATYUN订阅号

【学术】如何在15分钟内建立一个深度学习模型?

我们正在开源Lore,它是一个框架,可供机器学习研究人员使用。 Lore地址:https://github.com/instacart/lore 机器学习常常给...

2697
来自专栏AI研习社

Github 项目推荐 | 用 Python 实现的大规模线性回归、分类和排名库 —— lightning

Lightning 稳定版本的预编译二进制文件在主要平台可用,需要用 pip 安装:

721
来自专栏应用案例

RIOT 与 ImageOptim - 两款 Win 和 Mac 上好用的免费图片优化无损压缩工具

不管你是网站站长、自媒体、博客作者、摄影师、设计师,还是需要在网上分享传输图片/照片的人,都希望自己上传图片耗时更短、图片体积更小,别人浏览时又能更快下载显示出...

2805
来自专栏机器之心

资源 | Luminoth:基于TensorFlow的开源计算机视觉工具包

2717
来自专栏机器之心

学界 | 中科院计算所开源Easy Machine Learning:让机器学习应用开发简单快捷

选自Github 机器之心编译 今日,中科院计算所研究员徐君在微博上宣布「中科院计算所开源了 Easy Machine Learning 系统,其通过交互式图...

2845
来自专栏点点滴滴

引物设计

873
来自专栏机器之心

开源 | 浏览器上最快的DNN执行框架WebDNN:从基本特性到性能测评

选自Github 机器之心编译 参与:蒋思源、晏奇 WebDNN 是网页浏览器中最快的 DNN 执行框架,而本文首先简单介绍了 WebDNN 特征与其框架结构...

2586
来自专栏IT派

基于OpenCV的摄像头圆心计算

导语:这几天,小编学习到了一个好玩的摄像头图像圆心计算的程序代码。另外,小编Tom邀请你一起搞事情! 在这份程序代码中,小编在Python3下运行,使用到...

3195
来自专栏AI科技大本营的专栏

如何在浏览器上跑深度学习模型?并且一行JS代码都不用写

翻译 | 林椿眄 编辑 | 周翔 2017 年 8 月,华盛顿大学的陈天奇团队发布了 TVM,和 NNVM 一起组成深度学习到各种硬件的完整优化工具链,支持手机...

3175

扫描关注云+社区