使用Python+Tensorflow的CNN技术快速识别验证码

近年来,机器学习变得愈加火热,中国选手柯洁与AlphaGo的人机大战更是引起热议。目前,在图像识别和视觉分析研究中,卷积神经网络(CNN)技术的使用越来越多。Tensorflow 是由 Google 团队开发的神经网络模块,短短几年间, 就已经有很多次版本的更新。最近我也在自学Tensorflow,想通过卷积神经网络快速识别整块验证码(不分割字符)。期间也碰到许多问题,诸如软件安装,Tensorflow版本差异等。一开始学习tensorflow是盲目的,不知如何下手,网上的资料都比较单一,为了回报社会,让大家少走弯路,我将详细介绍整个过程。本教程所需要的完整材料,我都会放在这里。限于个人水平,如有错误请指出!

接下来我将介绍如何使用Python+Tensorflow的CNN技术快速识别验证码。在此之前,介绍我们用到的工具:

1. PyCharm社区版(python的IDE):写代码非常方便,安装第三方库(tensorflow 1.2.1)操作简单。

2. Python3:当我还在犹豫py2还是py3的时候,tensorflow已能支持windows、py3了,并且python3代表未来,建议使用Python3。

3. Photoshop:用于验证码的分析和处理(在这里不需要你精通)。

本文将从以下几个方面来介绍:

验证码分析和处理—— tensorflow安装 —— 模型训练 —— 模型预测

01

验证码分析和处理

网上搜索验证码识别能够得到很多教程,但大部分都是将验证码切割成单个字符训练,有时候 验证码字符大小不一或者发生重叠,切割验证码变得不适用。因此通过CNN技术将整块验证码进行识别,能使问题变得更加简单(以下操作对其他验证码分析有参考作用)。

在这里我们选择模拟学习这样的验证码:

该验证码来源于这里(正如sci-hub网站所言"to remove all barriers in the way of science",知识就该如此)。

原始的验证码

该验证码只由六位小写字母、噪点和干扰线组成,如果能去除噪点和干扰线,能够大大降低学习的难度。很多验证码的噪点和干扰线RGB值和字母的不一致,这个我们能通过Photoshop来分析,使用颜色取样器工具,分别在图片噪点、干扰线、空白处和字母处点击获得RGB值,如下图:

颜色取样器获得RGB值

分析后发现,只要将图片二值化只保留字母,就能得到不错的输入图片:

处理后的图片

实现代码如下:

验证码处理代码

以上就是验证码处理方法,为了下面的分析方便,我将处理好的验证码打包放到这里。

02

tensorflow安装

如果你查看了官方文档会发现提供了很多安装方式,但是还是比较复杂。针对不同的系统,不同设备(CPU or GPU)都不一样,我在这里选择用pycharm直接安装tensorflow非常好用,而且跟python版本兼容,不用考虑过多。打开pycharm,在菜单栏里flie-settings-project-project interpreter,选择python3 interpreter,

添加第三方库

然后点击+按钮,输入tensorflow,install package。

添加tensorflow库

至此,tensorflow就在电脑上安装好了,非常简单吧,我安装的时候版本是1.2.1。准备工作全部结束。

03

模型训练

如果你对卷积神经网络或者Python代码实现还不熟悉,我推荐你先看看《tensorflow实战》黄 文坚著这本书,比官方文档详细多。搞清楚代码如何实现后,再来看接下来的内容(毕竟我也是花了时间走弯路的)。

首先,我们先输入验证码的信息备用,图片是114*450像素,最大有6个字母,每个字母通过26个0或1表示,比如a表示成10000000000000000000000000,b表示成01000000000000000000000000,以此类推。

验证码信息

接下来定义一个函数,随机从训练集(3430张)中提取验证码图片,由于验证码经过我手动打标签(码了6小时),在这里只要获取验证码的名字和图片就够了,我默认放在"F:/captcha4/"目录下,需要注意的是返回的图片是以矩阵的形式。

获取验证码名字和图片

接下来定义两个函数,将名字转变成向量,将向量转变成名字。

名字向量互转

生成一个训练batch,也就是采样的大小,默认一次采集64张验证码作为一次训练,需要注意通过get_name_and_image()函数获得的image是一个含布尔值的矩阵,在这里通过1*(image.flatten())函数转变成只含0和1的1行114*450列的矩阵。

采样batch

接下来定义卷积神经网络结构,我们采用3个卷积层加1个全连接层的结构,在每个卷积层中都选用2*2的最大池化层和dropout层,卷积核尺寸选择5*5。需要注意的是在全连接层中,我们的图片114*450已经经过了3层池化层,也就是长宽都压缩了8倍,得到15*57大小。

卷积神经网络结构

结构建立好后就可以开始训练了,在这里选择的sigmoid_cross_entropy_with_logits()交叉熵来比较loss,用adam优化器来优化。输出每一步的loss值,每100步,输出一次准确率。在这里我调节当准确率达到99%后,结束训练。需要注意的是,keep_prob = 0.5,这个参数控制着过拟合,当我们机器学习速度过快的时候,可以减小该值,让机器遗忘的多一点(像人一样,记得多不一定好,哈哈)。

训练模型

训练完成后,你应该会得到如下几个文件。在这里我花了将近9个小时跑了1800步,达到99.5%的准确率。输出文件的详细介绍参考这里。

模型输出文件

04

模型预测

我们的模型训练成功后,我们就要检验一下该模型的预测水平,在这里我们首先要把train_crack_captcha_cnn()函数注释掉,然后再定义一个预测模型的函数crack_captcha(),需要注意为了从预测集中抽数据,这里的get_name_and_image()函数调用"F:/captcha5/"目录下的10张预测图片。

更改到预测集文件夹

从预测集中随机预测10次

预测结果如下:

预测结果对比

经过比较,我发现10张预测的能有4张准确,这还有待改进,但是整体上还是达到了我的要求。毕竟训练集的准确率有99.5%。如果我调低keep_prob的值,增加样本量,增加卷积层,最后的预测效果应该会更好。

总之,通过上面这个教程,只是教大家如何通过tensorflow的CNN技术处理整块验证码,大家可以尝试着用其他验证码试试,但是样本量越多越好。

05

总结

首先本文教大家如何简单处理验证码,然后介绍了tensorflow的快速安装方式,最后通过实现了CNN下整块验证码的识别,训练集准确率达到99.5%,测试集准确率在40%左右。如果调低keep_prob的值,增加样本量,增加卷积层,最后的预测效果应该会更好。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-12-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏小詹同学

人脸检测——笑脸检测

前边已经详细介绍过人脸检测,其实检测类都可以归属于同一类,毕竟换汤不换药!无论是人脸检测还是笑脸检测,又或者是opencv3以后版本加入的猫脸检测...

4757
来自专栏YoungGy

MMD_6b_DecisionTree

overview ? construct 构建决策树的时候需要考虑以下问题: 什么时候停止 如果不停止,那么以什么变量的什么特征构建二叉树 如果停止,那么预测的...

1787
来自专栏机器之心

开源 | 深度安卓恶意软件检测系统:用卷积神经网络保护你的手机

选自GitHub 机器之心编译 参与:Panda 恶意软件可以说是我们现代生活的一大威胁,为了保护我们电子设备中的财产和资料安全,我们往往需要寻求安全软件的帮助...

2657
来自专栏机器之心

资源 | 清华大学发布珠算:一个用于生成模型的Python库

选自Github 机器之心编译 参与:吴攀 5 月 27-28 日,机器之心主办的第一届全球机器智能峰会(GMIS 2017)将在北京 898 创新空间举行。在...

34410
来自专栏Jack-Cui

Caffe学习笔记(一):CIFRA-10在Caffe上进行训练学习

运行平台:Ubuntu14.04     安装完Caffe后,如何开始学习Caffe呢?一个不错的方法就是从Caffe自带的examples开始学起。在caff...

2377
来自专栏生信技能树

点点鼠标就能完成的NMR代谢组学实战

代谢组学几乎完全不涉及生物信息学最核心的序列比对,包括武汉中科院数物所波谱国重实验室等主流科研机构都是利用化学计量学和多元统计分析方法,对通过核磁共振(NMR)...

913
来自专栏AI研习社

Github 项目推荐 | 类 Keras 的 PyTorch 深度学习框架 —— PyToune

PyToune 是一个类 Keras 的 Pytorch 深度学习框架,可用来处理训练神经网络所需的大部分模板代码。 用 PyToune 你可以: 更容易地训练...

32710
来自专栏应用案例

使用Python+Tensorflow的CNN技术快速识别验证码

2018年1月26/1月12日 ? NVIDIA 深度学习学院 带你快速进入火热的DL领域 正文共2929个字,17张图,预计阅读时间:8分钟。 近年来,机器学...

3516
来自专栏机器学习人工学weekly

机器学习人工学weekly-2018/4/15

注意下面很多链接需要科学上网,无奈国情如此 1. DeepMind的新工作,不用地图在城市里导航 Learning to navigate in cities ...

3338
来自专栏机器之心

教程 | 如何在浏览器使用synaptic.js训练简单的神经网络推荐系统

3524

扫码关注云+社区