怎样分析样本调研数据(译)

从一个群体样本中获取群体的整体特征是许多研究设计和统计方法发展的基础。根据数据收集的算法、调研问题的类型和调研的目标,分析样本调研数据的方法各不相同。这篇文章会简洁明了的分析调研数据过程中的各种问题,同时会说明在一个完整的调研数据分析报告中应该包含什么。这些并不是基本准则而只是一些建议。

调研数据分析的过程应该包括以下步骤:

1、数据验证和探索性分析

2、确认性分析

3、数据解释

4、数据分析报告存档(用于将来的分析)

1数据验证和探索性分析

数据验证主要负责确认调查问卷被正确的完成,并且调研数据具有一致性和逻辑性。以下是一些建议性的数据验证的内容,你应该去做但并不局限于此:

1、超出范围的录入:这些通常是由于较差的问卷设计或者数据输入错误。比如一个询问受访者年龄的问题得到200岁的未分类结果,这是绝不可能的。

2、逻辑上不一致的数据:当两个或者多个变量/问题的答案放在一起时不成逻辑。问卷设计过程中运用分支逻辑方法可以帮助避免这种数据的不一致性,尽管不能完全避免。

3、编码:这将包括所有的分类结果都被编码。比如,当一个有意义的预分配标签没有被分配时,结果将没有数值。如果需要将一些调研中的开放性问题分类,人类的专业知识,可能再加上定性分析工具的帮助,可以将问题很好的分组。

一旦上述的检验内容都已完成,探索性数据图表就可以产生。在探索性分析的过程中,数据清理的战线被拉长,因为分析总结可能带来其他的问题,一旦真的出现问题,你应该在探索性分析中研究这几个方面:

1、奇怪或者极端的数值,可能是需要更正的错误。

2、解释问题的主要图表。比如是不是在某种条件下男性的比例就是比不在这种条件下的比例高?

3、迹象表明修改变量后结果会更加清晰。比如进行重新编码或转换。

4、图表可能表明新设的问题会比原来的问题更具有说明性,这对于生成假设非常重要。

当简单随机抽样不能够作为统计方法调整的方式,比如有时加权方法对于得到明确的分析结果十分必要。但是,调研者通常在开始获取信息时就运用了很好的统计方法因而不需要调整,不过以下是一些常见的统计调整方法:

1、加权: 在调整的数据中,有些被调查者或者问题或多或少的会比其他的调查者和问题更加重要。这就保证了数据更能够代表调查群体的特性。典型的做法是根据调查者/事件在样本中被选中概率来赋予相应的权重。

2、变量重组:这种方法将在原有变量的基础上,通过重新定义和重新分类的方法产生新的变量。比如,解释一个问题所需要的分类科目可以合并重组为更少的分类科目,就像我们可以把十个分类科目合并成两个。

3、维度转换:根据可比性或兼容性的目标,调研数据会使用不同的长度和种类。

2确认性分析

探索性分析可以描述发生了什么,但是这只是试探性的。我们需要确认图形信息是能反映真实情况的,因此我们需要不确定性预测,比如通过标准误差或置信区间来预测样本采集中的误差。从这个角度讲我们需要统计性分析。

统计性分析的步骤取决于以下几个方面:

1、调研的设计思路

2、响应变量的类型

3、探索性变量的类别

标准的抽样调查数据分析包括计算不同变量的比例以及它们的标准误差。连续性因变量可以通过简单线性回归或者多元线性回归进行分析。如果变量间并没有很好的线性关系,有时会用非线性回归的分析方法。对于有序变量之间的关系研究,我们可以运用Spearman秩相关或者Kendall’s tau的统计方法。对于名义变量的研究,包括对每个变量类别所占比例的统计,同时可以根据Chi-square tests(卡方检验)和Fisher’s exact test(Fisher精确检验)的方法探寻两个名义变量之间的关系。对于因变量为二分变量,自变量多于一个的情况,我们通常采用Logistic回归的方法进行分析。此外,如果因变量是有序的,我们可以采取有序Logistic回归的方法。当调研底层聚集大量观察值时,可以采用多层建模的方法进行分析。

如果调研者专注于研究主要发现或者样本调研目标,那么交叉列表在展示中将非常有效。交叉列表通常是总结报告和对比分析中的重要组成部分。

3数据解释

当你完成数据分析,是时候考虑一下调研的结果对于手头上的问题有什么意义。以下是你在数据解释的过程中应该注意的方面:

1、清楚的阐述调研结果有什么实质性的发现。

2、讨论这些新的发现是不是能够对过去的发现提供更多的实例参考。比如可以对一些通用的理论和原则提供验证,或者对于现在的理论提出实质性的修改意见。

3、运用调研中的定量数据对于目标群体进行定量预测。

4、解释你现在的数据分析结果对于调研目标的意义,而且如果需要的话,对下一步调研的步骤给予建议。

4数据分析报告存档(用于将来的分析)

分析报告存档是十分重要的!因为有人以后可能会借鉴复制你的调研结果,你可能以后也会参考之前自己的分析报告,因此如果没有很好的存档,将有可能很难回忆起来。(Via:36大数据)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-03-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【前沿】谷歌大脑Jeff Dean最新工作:用机器学习索引替代B-Trees,性能提升3倍

【导读】最近谷歌Jeffrey Dean等人发表工作《The Case for Learned Index Structures》:用机器学习来学习数据分布,从...

4176
来自专栏趣学算法

算法为什么那么难?——算法学习秘籍

(1)我们学习了那些经典的算法,在惊叹它们奇思妙想的同时,难免疑虑重重:这么刁,怎么想到的?对学生来说,这可能是最费解、也最让人窝火的地方。高手讲,学算法要学它...

792
来自专栏CDA数据分析师

SPSS常见数据分析方法比较汇总

SPSS作为一款成熟的数据分析工具,其主要特点就是将各种各样的统计分析方法流程化模块化。 一、SPSS常用多变量分析技术比较汇总表 ? 注: 卡方分析:定量两个...

2067
来自专栏大数据挖掘DT机器学习

R语言-中国各城市PM2.5数据间的相关分析

中国各城市PM2.5数据间的相关分析 相关分析(correlation analysis)是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关...

4584
来自专栏用户2442861的专栏

美团推荐算法实践

推荐系统并不是新鲜的事物,在很久之前就存在,但是推荐系统真正进入人们的视野,并且作为一个重要的模块存在于各个互联网公司,还是近几年的事情。

751
来自专栏PPV课数据科学社区

【学习】怎样分析样本调研数据

从一个群体样本中获取群体的整体特征是许多研究设计和统计方法发展的基础。根据数据收集的算法、调研问题的类型和调研的目标,分析样本调研数据的方法各不相同。这篇文章会...

4027
来自专栏月色的自留地

NMF学习练习:做电影推荐

1087
来自专栏音视频应用

libsonic的原理介绍与应用

在音频处理的时候常常会涉及到音频的变速、变调等方面的操作,使用的场景比较广泛如汤姆猫、男声变女声等,此外某些应用场合下的低延迟的播放器,往往也需要涉及到这方面的...

1874
来自专栏PPV课数据科学社区

只需七步就能掌握Python数据准备

摘要: 本文主要讲述了如何在python中用七步就能完成中数据准备。 上图为CRISP-DM模型中的数据准备   下面七个步骤涵盖了数据准备的概念,个别任务...

3047
来自专栏专知

用深度学习规划会议时间点——Skejul

【导读】你是不是常常烦恼找不到合适的会议时间?我也经常遇到这种问题。当前人们越来越忙,想要协调合适的会议时间是很困难的。本文中,数据科学家Favio Vázqu...

3325

扫码关注云+社区